scholarly journals Behaviour of cranes (family Gruidae) mirrors their phylogenetic relationships

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nela Nováková ◽  
Jan Robovský

Abstract Background The behavioural repertoire of every species evolved over time and its evolution can be traced through the phylogenetic relationships in distinct groups. Cranes (family Gruidae) represent a small, old, monophyletic group with well-corroborated phylogenetic relationships on the species level, and at the same time they exhibit a complex and well-described behavioural repertoire. Methods We therefore investigated the evolution of behavioural traits of cranes in a phylogenetic context using several phylogenetic approaches and two types of trait scoring. The cranes exhibit more than a hundred behavioural displays, almost one third of which may be phylogenetically informative. Results More than half of the analysed traits carry a significant phylogenetic signal. The ancestor of cranes already exhibited a quite complex behavioural repertoire, which remained unchanged in Balearicinae but altered greatly in Gruinae, specifically by the shedding of traits rather than their creation. Trait scoring has an influence on results within the Gruinae, primarily in genera Bugeranus and Anthropoides. Conclusions Albeit the behavioural traits alone cannot be used for resolving species-level relationships within the Gruidae, when optimized on molecular tree, they can help us to detect interesting evolutionary transformations of behaviour repertoire within Gruiformes. The Limpkin (Aramus guarauna) seems to be the most enigmatic species and should be studied in detail for its behavioural repertoire, which may include some precursors of crane behavioural traits.

2006 ◽  
Vol 31 (3) ◽  
pp. 586-596 ◽  
Author(s):  
Livia Wanntorp ◽  
Alexander Kocyan ◽  
Ruurd van Donkelaar ◽  
Susanne S. Renner

The delimitation of the genus Hoya, with at least 200 species distributed from India and China to Australia, from its closest relatives in the Marsdenieae has long been problematic, precluding an understanding of the evolution and biogeography of the genus. Traditional circumscriptions of genera in the Hoya alliance have relied on features of the flower, but these overlap extensively between clades and may be evolutionarily labile. We obtained chloroplast DNA sequences to infer the phylogenetic relationships among a sample of 35 taxa of Hoya and 11 other genera in the tribe Marsdenieae, namely Absolmsia, Cionura, Dischidia, Dregea, Gongronema, Gunnessia, Madangia, Marsdenia, Micholitzia, Rhyssolobium, and Telosma. Trees were rooted with representatives of Asclepiadeae, Ceropegieae, Fockeeae, Periplocoideae, and Secamonoideae. Hoya and Dischidia form a monophyletic group, but the phylogenetic signal in the chloroplast data analyzed here was insufficient to statistically support the mutual monophyly of the two genera. A monophyletic Hoya, however, must include the monotypic Absolmsia, Madangia, and Micholitzia, a result congruent with their flower morphology. The data also identified several wellsupported groups within Hoya. The morphologically unusual Gunnessia belongs firmly in the Marsdenieae, but it is not close to Hoya and Dischidia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bobby Lim-Ho Kong ◽  
Hyun-Seung Park ◽  
Tai-Wai David Lau ◽  
Zhixiu Lin ◽  
Tae-Jin Yang ◽  
...  

AbstractIlex is a monogeneric plant group (containing approximately 600 species) in the Aquifoliaceae family and one of the most commonly used medicinal herbs. However, its taxonomy and phylogenetic relationships at the species level are debatable. Herein, we obtained the complete chloroplast genomes of all 19 Ilex types that are native to Hong Kong. The genomes are conserved in structure, gene content and arrangement. The chloroplast genomes range in size from 157,119 bp in Ilex graciliflora to 158,020 bp in Ilex kwangtungensis. All these genomes contain 125 genes, of which 88 are protein-coding and 37 are tRNA genes. Four highly varied sequences (rps16-trnQ, rpl32-trnL, ndhD-psaC and ycf1) were found. The number of repeats in the Ilex genomes is mostly conserved, but the number of repeating motifs varies. The phylogenetic relationship among the 19 Ilex genomes, together with eight other available genomes in other studies, was investigated. Most of the species could be correctly assigned to the section or even series level, consistent with previous taxonomy, except Ilex rotunda var. microcarpa, Ilex asprella var. tapuensis and Ilex chapaensis. These species were reclassified; I. rotunda was placed in the section Micrococca, while the other two were grouped with the section Pseudoaquifolium. These studies provide a better understanding of Ilex phylogeny and refine its classification.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
D. Kosova-Maali ◽  
E. Bergeron ◽  
Y. Maali ◽  
T. Durand ◽  
J. Gonzalez ◽  
...  

This study aims at genetic characterization and phylogenetic relationships ofNocardia brasiliensisfocusing by using housekeepingrrs,hsp65,andsodAgenes.N. brasiliensisis the species responsible for 80% of cases of actinomycetoma, one form of cutaneous nocardiosis which occurs mainly in tropical regions reaching immunocompetent patients in which the disease can lead to amputation. We analyze 36 indigenous cases ofN. brasiliensisthat happened in France. Phylogenetic analysis targetingrrsgene showed no robustness at phylogenetic nodes level. However, the use of a concatenation ofhsp65andsodAgenes showed that the tested strains surprisingly ranked in 3 well-defined genotypes. Genotypes 2 and 3 were phylogenetically closer to each other and both diverged from genotype 1 sustained by a high bootstrap of 81%. This last genotype hosts all the cases of pulmonary forms (3), the sole cerebral form, and almost all the cases of immunocompromised patients (3 out of 4). Moreover, excepting one of them, all the strains belonging to this group present a susceptibility to imipenem which is not the case in the other genotypes that rarely count among them strains being susceptible to this drug. The haplotype diversity (Hd) ofhsp65(0.927) andsodA(0.885) genes was higher than that ofrrs(0.824). For this gene, we obtained 16 polymorphic sites whereas, forhsp65andsodAgenes, up to 27 and 29 were identified, respectively. This study reveals that these two genes have an important genetic discriminatory power for the evaluation of the intraspecies genetic variability ofN. brasiliensisand they may be useful for identification purposes at species level. This study also reveals the possible existence of a new species harbored by genotype 1.


2003 ◽  
Vol 81 (11) ◽  
pp. 1885-1893 ◽  
Author(s):  
Salah Bouamer ◽  
Serge Morand

The phylogenetic relationships of 23 oxyurid species from five genera (21 parasite species of the Palaearctic Testudinidae, 1 parasite species of Uromastix acanthinurus Bell, 1825 from Algeria, and 1 parasite species of Cteno sa ura pectinata (Wiegmann, 1834) from Mexico) were investigated using 30 morphological characters obtained from species descriptions. The nonweighted analysis produced one shortest tree. All species of the ingroup form a monophyletic group and the oxyurid species of Testudinidae form a monophyletic group. The type species of the genus Alaeuris Thapar, 1925 is the basal member of the species parasitizing Testudinidae. The analysis confirms the monophyly of the genus Thaparia Ortlepp, 1933, whereas the genera Mehdiella Seurat, 1918 and Tachygonetria Wedl, 1862 are considered paraphyletic groups. The large diversification in the genus Tachygonetria is linked to their position in the host caecum. The ancestral state is in the paramucous and the derived state is in the centre of the caecum. This suggests that recent speciation in the group occurs in the centre of the caecum.


2020 ◽  
Author(s):  
Jack Hassall ◽  
Meera Unnikrishnan

AbstractInteractions of commensal bacteria within the gut microbiota and with invading pathogens are critical in determining the outcome of an infection. While murine studies have been valuable, we lack in vitro tools to monitor community responses to pathogens at a single-species level. We have developed a multi-species community of nine representative gut species cultured together as a mixed biofilm and tracked numbers of individual species over time using a qPCR-based approach. Introduction of the major nosocomial gut pathogen, Clostridiodes difficile, to this community resulted in increased adhesion of commensals and inhibition of C. difficile multiplication. Interestingly, we observed an increase in individual Bacteroides species accompanying the inhibition of C. difficile. Furthermore, Bacteroides dorei reduced C. difficile growth within biofilms, suggesting a role for Bacteroides spp in prevention of C. difficile colonisation. We report here an in vitro tool with excellent applications for investigating bacterial interactions within a complex community.


2012 ◽  
Vol 60 (6) ◽  
pp. 526 ◽  
Author(s):  
T. R. Kinge ◽  
A. M. Mih ◽  
M. P. A. Coetzee

Ganoderma is an important genus of the Polyporales in the tropics. Identification of tropical species has mainly been based on morphology, which has led to misidentification. This study aimed to elucidate the diversity and phylogenetic relationships of Ganoderma isolates from different hosts in Cameroon using morphological and molecular techniques. Analyses of basidiocarp morphology and the internal transcribed spacer and mitochondria small subunit were undertaken for 28 isolates from five plant species. The results show that the isolates belong to eight species. Three of the species were identified to species level; of these only G. ryvardense has been previously described from Cameroon while G. cupreum and G. weberianum are new records. The five remaining species did not match with any previously described species and have been designated as Ganoderma with different species affinities.


2021 ◽  
Vol 46 (1) ◽  
pp. 162-174
Author(s):  
Ming-Hui Yan ◽  
Chun-Yang Li ◽  
Peter W. Fritsch ◽  
Jie Cai ◽  
Heng-Chang Wang

Abstract—The phylogenetic relationships among 11 out of the 12 genera of the angiosperm family Styracaceae have been largely resolved with DNA sequence data based on all protein-coding genes of the plastome. The only genus that has not been phylogenomically investigated in the family with molecular data is the monotypic genus Parastyrax, which is extremely rare in the wild and difficult to collect. To complete the sampling of the genera comprising the Styracaceae, examine the plastome composition of Parastyrax, and further explore the phylogenetic relationships of the entire family, we sequenced the whole plastome of P. lacei and incorporated it into the Styracaceae dataset for phylogenetic analysis. Similar to most others in the family, the plastome is 158189 bp in length and contains a large single-copy region of 88085 bp and a small single-copy region of 18540 bp separated by two inverted-repeat regions of 25781 bp each. A total of 113 genes was predicted, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic relationships among all 12 genera of the family were constructed with 79 protein-coding genes. Consistent with a previous study, Styrax, Huodendron, and a clade of Alniphyllum + Bruinsmia were successively sister to the remainder of the family. Parastyrax was strongly supported as sister to an internal clade comprising seven other genera of the family, whereas Halesia and Pterostyrax were both recovered as polyphyletic, as in prior studies. However, when we employed either the whole plastome or the large- or small-single copy regions as datasets, Pterostyrax was resolved as monophyletic with 100% support, consistent with expectations based on morphology and indicating that non-coding regions of the Styracaceae plastome contain informative phylogenetic signal. Conversely Halesia was still resolved as polyphyletic but with novel strong support.


Zootaxa ◽  
2008 ◽  
Vol 1939 (1) ◽  
pp. 58-60 ◽  
Author(s):  
DIRK ERPENBECK ◽  
OLIVER VOIGT ◽  
MEHMET GÜLTAS ◽  
GERT WÖRHEIDE

Unravelling the phylogenetic relationships of sponges (Phylum Porifera) is an important as well as challenging task. It helps the understanding of character evolution among early branching metazoans but also aids in bioprospecting for valuable bioactive sponge compounds. However, the phylogenetic relationships among Porifera are largely unsolved, because the simple poriferan bauplan frequently prevents unambiguous taxonomic species assignment and a clear definition of morphological synapomorphies is difficult (see e.g. Boury-Esnault 2006). DNA sequence markers are frequently employed to overcome morphological shortcomings in phylogeny (e.g. Kelly Borges et al. 1991) and taxonomy (e.g. DNA barcoding, see Wörheide & Erpenbeck 2007). However, some DNA markers suffer from insufficient phylogenetic signal (see e.g. Duran et al. 2004 and Wörheide 2006 on CO1 in population studies) and unequal evolutionary rates among taxa (see e.g. Erpenbeck et al. 2004 on 28S in Haplosclerida). Therefore, a careful evaluation and selection of molecular markers for each individual project is required.


2020 ◽  
Author(s):  
Matthias Seidel ◽  
Yûsuke N. Minoshima ◽  
Richard A. B. Leschen ◽  
Martin Fikácek

The New Zealand endemic beetle genus Saphydrus Sharp, 1884 (Coleoptera:Hydrophilidae:Cylominae) is studied in order to understand its phylogenetic position, species-level systematics, biology and distribution, and to reveal reasons for its rarity. The first complete genus-level phylogeny of Cylominae based on two mitochondrial (cox1, 16S) and two nuclear genes (18S, 28S) covering 18 of 19 genera of the subfamily reveals Saphydrus as an isolated lineage situated in a clade with Cylorygmus (South America), Relictorygmus (South Africa) and Eurygmus (Australia). DNA is used to associate two larval morphotypes with Saphydrus: one of them represents the larvae of S. suffusus Sharp, 1884; the other, characterised by unique characters of the head and prothorax morphology, is revealed as sister but not closely related to Saphydrus. It is described here as Enigmahydrus, gen. nov. with a single species, E. larvalis, sp. nov., whose adult stage remains unknown. Saphydrus includes five species, two of which (S. moeldnerae, sp. nov. and S. tanemahuta, sp. nov.) are described as new. Larvae of Enigmahydrus larvalis and Saphydrus suffusus are described and illustrated in detail based on DNA-identified specimens. Candidate larvae for Saphydrus obesus Sharp, 1884 and S. tanemahuta are illustrated and diagnosed. Specimen data are used to evaluate the range, altitudinal distribution, seasonality and population dynamics over time for all species. Strongly seasonal occurrence of adults combined with other factors (winter occurrence in S. obesus, occurrence at high altitudes in S. tanemahuta) is hypothesised as the primary reason of the rarity for Saphydrus species. By contrast, Enigmahydrus larvalis underwent a strong decline in population number and size since the 1970s and is currently known from a single, locally limited population; we propose the ‘nationally threatened’ status for this species. http://zoobank.org/urn:lsid:zoobank.org:pub:28D87163-29E8-418C-9380-262D3038023A


2002 ◽  
Vol 80 (11) ◽  
pp. 1887-1899 ◽  
Author(s):  
Alison M Murray ◽  
Kathlyn M Stewart

The family Alestidae (also referred to as the African Characidae) comprises the African dwarf forms ("Petersiini") and the genera Alestes, Brycinus, Bryconaethiops, and Hydrocynus. Although several authors have presented characters to support the monophyly of the family, a cladistic analysis of the group has not been published. Furthermore, the interrelationships of the constituent groups are the subject of some controversy. A cladistic analysis of the Alestidae is presented, including characters to support the monophyly of the family. The results of this study indicate that several species should be removed from the genus Brycinus, that Hydrocynus is the sister group of Alestes s.str. (containing only five species), and that the dwarf alestids ("Petersiini") do not form a monophyletic group.


Sign in / Sign up

Export Citation Format

Share Document