Phylogeny, systematics and rarity assessment of New Zealand endemic Saphydrus beetles and related enigmatic larvae (Coleoptera : Hydrophilidae : Cylominae)

2020 ◽  
Author(s):  
Matthias Seidel ◽  
Yûsuke N. Minoshima ◽  
Richard A. B. Leschen ◽  
Martin Fikácek

The New Zealand endemic beetle genus Saphydrus Sharp, 1884 (Coleoptera:Hydrophilidae:Cylominae) is studied in order to understand its phylogenetic position, species-level systematics, biology and distribution, and to reveal reasons for its rarity. The first complete genus-level phylogeny of Cylominae based on two mitochondrial (cox1, 16S) and two nuclear genes (18S, 28S) covering 18 of 19 genera of the subfamily reveals Saphydrus as an isolated lineage situated in a clade with Cylorygmus (South America), Relictorygmus (South Africa) and Eurygmus (Australia). DNA is used to associate two larval morphotypes with Saphydrus: one of them represents the larvae of S. suffusus Sharp, 1884; the other, characterised by unique characters of the head and prothorax morphology, is revealed as sister but not closely related to Saphydrus. It is described here as Enigmahydrus, gen. nov. with a single species, E. larvalis, sp. nov., whose adult stage remains unknown. Saphydrus includes five species, two of which (S. moeldnerae, sp. nov. and S. tanemahuta, sp. nov.) are described as new. Larvae of Enigmahydrus larvalis and Saphydrus suffusus are described and illustrated in detail based on DNA-identified specimens. Candidate larvae for Saphydrus obesus Sharp, 1884 and S. tanemahuta are illustrated and diagnosed. Specimen data are used to evaluate the range, altitudinal distribution, seasonality and population dynamics over time for all species. Strongly seasonal occurrence of adults combined with other factors (winter occurrence in S. obesus, occurrence at high altitudes in S. tanemahuta) is hypothesised as the primary reason of the rarity for Saphydrus species. By contrast, Enigmahydrus larvalis underwent a strong decline in population number and size since the 1970s and is currently known from a single, locally limited population; we propose the ‘nationally threatened’ status for this species. http://zoobank.org/urn:lsid:zoobank.org:pub:28D87163-29E8-418C-9380-262D3038023A

2020 ◽  
Author(s):  
Jack Hassall ◽  
Meera Unnikrishnan

AbstractInteractions of commensal bacteria within the gut microbiota and with invading pathogens are critical in determining the outcome of an infection. While murine studies have been valuable, we lack in vitro tools to monitor community responses to pathogens at a single-species level. We have developed a multi-species community of nine representative gut species cultured together as a mixed biofilm and tracked numbers of individual species over time using a qPCR-based approach. Introduction of the major nosocomial gut pathogen, Clostridiodes difficile, to this community resulted in increased adhesion of commensals and inhibition of C. difficile multiplication. Interestingly, we observed an increase in individual Bacteroides species accompanying the inhibition of C. difficile. Furthermore, Bacteroides dorei reduced C. difficile growth within biofilms, suggesting a role for Bacteroides spp in prevention of C. difficile colonisation. We report here an in vitro tool with excellent applications for investigating bacterial interactions within a complex community.


2008 ◽  
Vol 14 (2) ◽  
pp. 108
Author(s):  
Emma Moran ◽  
Ross Cullen ◽  
Kenneth F. D. Hughey

Despite the scarcity of funding for species conservation programmes, estimation of the cost of threatened species programmes occurs in only a few countries. This paper examines the reasons for the lack of species programme cost estimates and the likely impacts of this on conservation management. We report methodology used to estimate cost for eleven New Zealand species programmes and their estimated costs over a ten year period. Differences between species in the costs of the programmes and the breakdown of the costs are highlighted. The estimated costs are compared with expected levels of expenditure on each species to illustrate the existence of a budget constraint for threatened species. The likely effects of cost of species conservation exceeding expenditures on species conservation are examined. Annual cost data is used together with information on rate of conservation progress to estimate time and total cost for each species to reach Not Threatened status.


1991 ◽  
Vol 22 (4) ◽  
pp. 457-463 ◽  
Author(s):  
A. Borkent ◽  
R. Szadziewski

AbstractThe first fossil Corethrellidae, represented by two male adult Corethrella, are described. One, C. prisca sp. n., is from Saxonian amber collected in East Germany and is of Miocene age (22 Ma). The other, C. nudistyla sp. n., is from Dominican Republic amber and is 15-40 million years old. The family Corethrellidae, because of its phylogenetic position, is presumably of at least Jurassic age. The fossils are typical members of the genus Corethrella and belong to a clade which is the sister group of a single species in New Zealand.


Author(s):  
I.M. Ritchie ◽  
C.C. Boswell ◽  
A.M. Badland

HERBACE DISSECTION is the process in which samples of herbage cut from trials are separated by hand into component species. Heavy reliance is placed on herbage dissection as an analytical tool ,in New Zealand, and in the four botanical analysis laboratories in the Research Division of the Ministry of Agriculture and Fisheries about 20 000 samples are analysed each year. In the laboratory a representative subsample is taken by a rigorous quartering procedure until approximately 400 pieces of herbage remain. Each leaf fragment is then identified to species level or groups of these as appropriate. The fractions are then dried and the composition calculated on a percentage dry weight basis. The accuracy of the analyses of these laboratories has been monitored by a system of interchanging herbage dissection samples between them. From this, the need to separate subsampling errors from problems of plant identification was, appreciated and some of this work is described here.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Javier Fernández-López ◽  
M. Teresa Telleria ◽  
Margarita Dueñas ◽  
Mara Laguna-Castro ◽  
Klaus Schliep ◽  
...  

AbstractThe use of different sources of evidence has been recommended in order to conduct species delimitation analyses to solve taxonomic issues. In this study, we use a maximum likelihood framework to combine morphological and molecular traits to study the case of Xylodon australis (Hymenochaetales, Basidiomycota) using the locate.yeti function from the phytools R package. Xylodon australis has been considered a single species distributed across Australia, New Zealand and Patagonia. Multi-locus phylogenetic analyses were conducted to unmask the actual diversity under X. australis as well as the kinship relations respect their relatives. To assess the taxonomic position of each clade, locate.yeti function was used to locate in a molecular phylogeny the X. australis type material for which no molecular data was available using morphological continuous traits. Two different species were distinguished under the X. australis name, one from Australia–New Zealand and other from Patagonia. In addition, a close relationship with Xylodon lenis, a species from the South East of Asia, was confirmed for the Patagonian clade. We discuss the implications of our results for the biogeographical history of this genus and we evaluate the potential of this method to be used with historical collections for which molecular data is not available.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
James M. Hodge ◽  
Andrey A. Yurchenko ◽  
Dmitriy A. Karagodin ◽  
Reem A. Masri ◽  
Ryan C. Smith ◽  
...  

Abstract Background The malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. Methods In this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identification was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles. Results The analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group. Conclusions This study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 506
Author(s):  
Alexander Ereskovsky ◽  
Ilya E. Borisenko ◽  
Fyodor V. Bolshakov ◽  
Andrey I. Lavrov

While virtually all animals show certain abilities for regeneration after an injury, these abilities vary greatly among metazoans. Porifera (Sponges) is basal metazoans characterized by a wide variety of different regenerative processes, including whole-body regeneration (WBR). Considering phylogenetic position and unique body organization, sponges are highly promising models, as they can shed light on the origin and early evolution of regeneration in general and WBR in particular. The present review summarizes available data on the morphogenetic and cellular mechanisms accompanying different types of WBR in sponges. Sponges show a high diversity of WBR, which principally could be divided into (1) WBR from a body fragment and (2) WBR by aggregation of dissociated cells. Sponges belonging to different phylogenetic clades and even to different species and/or differing in the anatomical structure undergo different morphogeneses after similar operations. A common characteristic feature of WBR in sponges is the instability of the main body axis: a change of the organism polarity is described during all types of WBR. The cellular mechanisms of WBR are different across sponge classes, while cell dedifferentiations and transdifferentiations are involved in regeneration processes in all sponges. Data considering molecular regulation of WBR in sponges are extremely scarce. However, the possibility to achieve various types of WBR ensured by common morphogenetic and cellular basis in a single species makes sponges highly accessible for future comprehensive physiological, biochemical, and molecular studies of regeneration processes.


Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 108
Author(s):  
Pedro María Alarcón-Elbal ◽  
Ricardo García-Jiménez ◽  
María Luisa Peláez ◽  
Jose Luis Horreo ◽  
Antonio G. Valdecasas

The systematics of many groups of organisms has been based on the adult stage. Morphological transformations that occur during development from the embryonic to the adult stage make it difficult (or impossible) to identify a juvenile (larval) stage in some species. Hydrachnidia (Acari, Actinotrichida, which inhabit mainly continental waters) are characterized by three main active stages—larval, deutonymph and adult—with intermediate dormant stages. Deutonymphs and adults may be identified through diagnostic morphological characters. Larvae that have not been tracked directly from a gravid female are difficult to identify to the species level. In this work, we compared the morphology of five water mite larvae and obtained the molecular sequences of that found on a pupa of the common mosquito Culex (Culex) pipiens with the sequences of 51 adults diagnosed as Arrenurus species and identified the undescribed larvae as Arrenurus (Micruracarus) novus. Further corroborating this finding, adult A. novus was found thriving in the same mosquito habitat. We established the identity of adult and deutonymph A. novus by morphology and by correlating COI and cytB sequences of the water mites at the larval, deutonymph and adult (both male and female) life stages in a particular case of ‘reverse taxonomy’. In addition, we constructed the Arrenuridae phylogeny based on mitochondrial DNA, which supports the idea that three Arrenurus subgenera are ‘natural’: Arrenurus, Megaluracarus and Micruracarus, and the somewhat arbitrary distinction of the species assigned to the subgenus Truncaturus.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nela Nováková ◽  
Jan Robovský

Abstract Background The behavioural repertoire of every species evolved over time and its evolution can be traced through the phylogenetic relationships in distinct groups. Cranes (family Gruidae) represent a small, old, monophyletic group with well-corroborated phylogenetic relationships on the species level, and at the same time they exhibit a complex and well-described behavioural repertoire. Methods We therefore investigated the evolution of behavioural traits of cranes in a phylogenetic context using several phylogenetic approaches and two types of trait scoring. The cranes exhibit more than a hundred behavioural displays, almost one third of which may be phylogenetically informative. Results More than half of the analysed traits carry a significant phylogenetic signal. The ancestor of cranes already exhibited a quite complex behavioural repertoire, which remained unchanged in Balearicinae but altered greatly in Gruinae, specifically by the shedding of traits rather than their creation. Trait scoring has an influence on results within the Gruinae, primarily in genera Bugeranus and Anthropoides. Conclusions Albeit the behavioural traits alone cannot be used for resolving species-level relationships within the Gruidae, when optimized on molecular tree, they can help us to detect interesting evolutionary transformations of behaviour repertoire within Gruiformes. The Limpkin (Aramus guarauna) seems to be the most enigmatic species and should be studied in detail for its behavioural repertoire, which may include some precursors of crane behavioural traits.


2020 ◽  
Author(s):  
Michael Joy ◽  
KJ Foote ◽  
P McNie ◽  
M Piria

© 2019 CSIRO. The number of New Zealand's freshwater fish listed as threatened has increased since 1992 when the first New Zealand threat classification system list was compiled. In this study, temporal and land cover-related trends were analysed for data on freshwater fish distribution, comprising more than 20 000 records for the 47 years from January 1970 to January 2017 from the New Zealand Freshwater Fish Database. The analysis included individual species abundance and distribution trends, as well as an index of fish community integrity, namely the Index of Biotic Integrity (IBI). Of the 25 fish species that met the requirements for analysis to determine changes in the proportion of sites they occupied over time, 76% had negative trends (indicating declining occurrence). Of the 20 native species analysed for the proportion of sites occupied over time, 75% had negative trends; 65% of these were significant declines and more species were in decline at pasture sites than natural cover sites. The average IBI score also declined over the time period and, when analysed separately, the major land cover types revealed that the IBI declined at pasture catchment sites but not at sites with natural vegetation catchments.


Sign in / Sign up

Export Citation Format

Share Document