scholarly journals Estimating the productive potential of five natural forest types in northeastern China

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhaofei Wu ◽  
Zhonghui Zhang ◽  
Juan Wang

Abstract Background There is a serious lack of experience regarding the productive potential of the natural forests in northeastern China, which severely limits the development of sustainable forest management strategies for this most important forest region in China. Accordingly, the objective of this study is to develop a first comprehensive system for estimating the wood production for the five dominant forest types. Methods Based on a network of 384 field plots and using the state-space approach, we develop a system of dynamic stand models, for each of the five main forest types. Four models were developed and evaluated, including a base model and three extended models which include the effects of dominant height and climate variables. The four models were fitted, and their predictive strengths were tested, using the “seemingly unrelated regression” (SUR) technique. Results All three of the extended models increased the accuracy of the predictions at varying degrees for the five major natural forest types of northeastern China. The inclusion of dominant height and two climate factors (precipitation and temperature) in the base model resulted in the best performance for all the forest types. On average, the root mean square values were reduced by 13.0% when compared with the base model. Conclusion Both dominant height and climate factors were important variables in estimating forest production. This study not only presents a new method for estimating forest production for a large region, but also explains regional differences in the effect of site productivity and climate.

Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 693 ◽  
Author(s):  
Bishnu Hari Poudyal ◽  
Tek Narayan Maraseni ◽  
Geoff Cockfield

Selective logging is one of the main natural forest harvesting approaches worldwide and contributes nearly 15% of global timber needs. However, there are increasing concerns that ongoing selective logging practices have led to decreased forest product supply, increased forest degradation, and contributed to forest based carbon emissions. Taking cases of natural forest harvesting practices from the Tarai region of Nepal and Queensland Australia, this study assesses forest product recovery and associated carbon emissions along the timber production chain. Field measurements and product flow analysis of 127 commercially harvested trees up to the exit gate of sawmills and interaction with sawmill owners and forest managers reveal that: (1) Queensland selective logging has less volume recovery (52.8%) compared to Nepal (94.5%) leaving significant utilizable volume in the forest, (2) Stump volume represents 5.5% of total timber volume in Nepal and 3.9% in Queensland with an average stump height of 43.3 cm and 40.1 cm in Nepal and Queensland respectively, (3) Average sawn timber output from the harvested logs is 36.3% in Queensland against 61% in Nepal, (4) Nepal and Queensland leave 0.186 Mg C m−3 and 0.718 Mg C m−3 on the forest floor respectively, (5) Each harvested tree damages an average of five plant species in Nepal and four in Queensland predominantly seedlings in both sites, and (6) Overall logging related total emissions in Queensland are more than double (1.099 Mg C m−3) those in Nepal (0.488 Mg C m−3). We compared these results with past studies and speculated on possible reasons for and potential implications of these results for sustainable forest management and reducing emissions from deforestation and forest degradation.


2021 ◽  
Vol 23 (3) ◽  
pp. 365-391
Author(s):  
D. Susilawati ◽  
P.J. Kanowski

Indonesian natural forest concessions and value chains are governed by a mandatory Timber Legality Verification System (SVLK), which includes assessment of Sustainable Production Forest Management (PHPL). Concessionaires and processors may also pursue voluntary forest certification. This study explores actors' compliance with these instruments along wood product value chains originating primarily from natural forests. Empirical results demonstrate that SVLK fostered legality compliance in domestic as well as export value chains, but still allows some possible loopholes. It is easier for actors to comply with SVLK than with Forest Stewardship Council (FSC) certification, because SVLK has less stringent requirements, and uses an assessment system that allows poor field performance and does not foster continuous improvement of practices. These results identify weaknesses in the architecture and implementation of the regulatory instruments, and suggest measures to strengthen Indonesia's sustainable forest management and timber legality systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Sylvester Ngome Chisika ◽  
Chunho Yeom

The need for ecologically sustainable management of natural forests has assumed greater prominence in conservation and climate change discourses. However, the identification of deadwood, a critical component of natural forests, continues to receive little attention around the world. Through a review of the existing literature, this study sought to promote consciousness and awareness on the value of deadwood using the case of Kenya’s natural forests in the wider context of biodiversity conservation and climate change. Results substantiate that deadwood in natural forests performs a vital function in forest biological and ecological functions. However, forest degradation through the removal of deadwood, even though widely neglected, results in considerable biodiversity loss and might alter natural forest ecosystems, thereby exacerbating the impacts of climate change. In Kenya, despite the recent sophistication of forest management tools, including the development of the Draft Forest Policy, 2020, and enactment of the Forest Conservation and Management Act, 2016, to increasingly recognize the more progressive forest management paradigms such as participatory forest management in natural forest management, the current deadwood management practice is faulty and could yield outcomes contrary to the policy intentions and the wider provisions of ecologically sustainable forest management. It is because major policy documents lack robust and explicit guidelines on achieving ecologically sustainable management of deadwood despite its centrality in providing ecosystem services and as a highly dependable source of energy resources for over 70% of the Kenyan population. Moreover, deadwood management appears to be affected by many complex biological, technical, policy, and socioeconomic factors that appear to be acting together against sustainable deadwood management. Still, perhaps most importantly, the absence of research on the topic is the most outstanding challenge. Therefore, in the future, improving the sustainable management of natural forests will require the restoration of deadwood and increasing consciousness on the value of deadwood through more research studies.


2021 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Yuanyuan Cheng ◽  
Lexin Zhou ◽  
Tian Liang ◽  
Jiayin Man ◽  
Yinghao Wang ◽  
...  

Based on the importance and sensitivity of microbial communities to changes in the forest ecosystem, soil microorganisms can be used to indicate the health of the forest system. The metagenome sequencing was used to analyze the changes of microbial communities between natural and plantation Castanea henryi forests for understanding the effect of forest types on soil microbial communities. Our result showed the soil microbial diversity and richness were higher in the natural forests than in the plantation. Proteobacteria, Actinobacteria, and Acidobacteria are the dominant categories in the C. henryi rhizosphere, and Proteobacteria and Actinobacteria were significantly enriched in the natural forest while Acidobacteria was significantly enriched in the plantation. Meanwhile, the functional gene diversity and the abundance of functions in the natural forest were higher than that of the plantation. Furthermore, we found that the microbial network in the natural forests had more complex than in the plantation. We also emphasized the low-abundance taxa may play an important role in the network structure. These results clearly showed that microbial communities, in response to different forest types, provide valuable information to manipulate microbiomes to improve soil conditions of plantation.


1997 ◽  
Vol 45 (4) ◽  
pp. 425-438 ◽  
Author(s):  
K.F. Wiersum

The process of domestication of tree crops has only been given limited attention. This process starts with the protection of natural forests and ends with the cultivation of domesticated tree crops. In this evolutionary process three types of human-influenced forest environments may be distinguished: (1) conserved forests, (2) modified forests, and (3) transformed forests. During the process of domestication an increasing input of human energy per unit of exploited forest takes place. Accordingly three phases in the domestication of forests may be distinguished: (1) an acculturalization phase in which social measures aimed at controlling the utilization of valuable tree species or patches of forests are implemented, (2) a phase of manipulation of wild tree species in which the socially-oriented management practices are enhanced with measures aimed at enhancing the (re)productive potential of valued species, and (3) a phase of cultivation of genetically modified tree crops. As a result of the co-domestication of forests and trees various types of forests and/or tree cultivation systems can be distinguished. So far more attention has been given to understanding the characteristics of the early and end phases than to the various intermediate phases represented by indigenous forest management and agroforestry systems. These are characterized by a modification of the highly diverse natural forest ecosystems to a state in which the biodiversity has been somewhat reduced, but in which a larger proportion of useful resources are present. Such systems provide interesting examples of the wide range of options for managing forest resources with varying degrees of biodiversity and productive values.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Shengwang Meng ◽  
Fan Yang ◽  
Sheng Hu ◽  
Haibin Wang ◽  
Huimin Wang

Current models for oak species could not accurately estimate biomass in northeastern China, since they are usually restricted to Mongolian oak (Quercus mongolica Fisch. ex Ledeb.) on local sites, and specifically, no biomass models are available for Liaodong oak (Quercuswutaishanica Mayr). The goal of this study was, therefore, to develop generic biomass models for both oak species on a large scale and evaluate the biomass allocation patterns within tree components. A total of 159 sample trees consisting of 120 Mongolian oak and 39 Liaodong oak were harvested and measured for wood (inside bark), bark, branch and foliage biomass. To account for the belowground biomass, 53 root systems were excavated following the aboveground harvest. The share of biomass allocated to different components was assessed by calculating the ratios. An aboveground additive system of biomass models and belowground equations were fitted based on predictors considering diameter (D), tree height (H), crown width (CW) and crown length (CL). Model parameters were estimated by jointly fitting the total and the components’ equations using the weighted nonlinear seemingly unrelated regression method. A leave-one-out cross-validation procedure was used to evaluate the predictive ability. The results revealed that stem biomass accounts for about two-thirds of the aboveground biomass. The ratio of wood biomass holds constant and that of branches increases with increasing D, H, CW and CL, while a reverse trend was found for bark and foliage. The root-to-shoot ratio nonlinearly decreased with D, ranging from 1.06 to 0.11. Tree diameter proved to be a good predictor, especially for root biomass. Tree height is more prominent than crown size for improving stem biomass models, yet it puts negative effects on crown biomass models with non-significant coefficients. Crown width could help improve the fitting results of the branch and foliage biomass models. We conclude that the selected generic biomass models for Mongolian oak and Liaodong oak will vigorously promote the accuracy of biomass estimation.


2015 ◽  
Vol 39 (3) ◽  
pp. 205-215 ◽  
Author(s):  
Alexander Christian Vibrans ◽  
Paolo Moser ◽  
Laio Zimermann Oliveira ◽  
João Paulo de Maçaneiro

Total tree height (h) is often difficult to measure in natural forests. Regression models based on easily accessed variables like DBH (d) can be an alternative, since their assumptions are validated. The aims of this study are to: (i) calibrate specific and generic h-d models for three forest types (Seasonal Deciduous Forest, DEC; Mixed Ombrophilous Forest, MIX; and Dense Rainforest, DEN) in Santa Catarina state testing the regression assumptions and evaluating model quality; (ii) verify different h-d relationship between forest types. The dataset (1,766 measured tree h and 3,150 estimated h) was collected by Santa Catarina Forest and Floristic Inventory (IFFSC) in 418 systematically located sample plots. Models were calibrated for two datasets, one containing hypsometer measurements, the other h estimations made by field crews. Specific models were calibrated for species with at least 30 sampled trees. Residual normality, randomness and heteroskedasticity were evaluated by analytical methods. Confidence bands were generated by the Working-Hotelling method; z test for means was applied to compare models based on the two databases. The statistical parameters such as corrected Akaike Information Criterion provided evidences that logarithmic models were better adjusted to the data. Both datasets were statistically different for DEN and MIX. Differences in h-d relationships were found between forest types. The use of calibrated h-d models is an alternative for studying the relationships between these variables and to assess vertical structure patterns of forest communities, when h measurements are not feasible, although, for situations that more accurate h values are needed, they will not always provide reliable predictions.


2020 ◽  
Author(s):  
Christian Zúñiga-Méndez ◽  
Victor Meza-Picado ◽  
Sebastian Ugalde-Alfaro ◽  
Jhonny Méndez-Gamboa

Abstract Background: Part of the success of forest conservation programs is due to the economic sustainability they can provide to owners of forest resources, and how these management mechanisms can be used within an increasingly aggressive productive landscape matrix. However, there are currently no precise or up-to-date data on the economic relationships between land uses and their respective productive activities. This study designed a model to evaluate the opportunity cost of natural forest management, taking as a reference the primary productive activities that take place within the Arenal-Huetar Norte Conservation Area, in Costa Rica. Methods: Profitability data from 24 sites in natural forests with a forest management plan approved by the State Forest Administration was used, as well as geographic and productive information on alternative land uses. Results: Based on these data, an opportunity cost map was generated which shows a marked segregation of the forests into two main areas: a) a high-opportunity cost area, located south of the study area; and b) a medium-low opportunity cost area, to the center-north of the study area. Conclusions: It is concluded that ideal areas for timber harvesting are currently restricted to places far from the market, and with low opportunity costs (ranging between ≤ $0 ha -1 year -1 and $500 ha -1 year -1 ).


2021 ◽  
Vol 6 (3) ◽  
pp. 67328
Author(s):  
Nur Apriatun Nafisah ◽  
R.C.Hidayat Soesilohadi

Petungkriyono forest is a tropical rainforest with high biodiversity. The increasing tourism activities in Petungkriyono lead to land conversion. Dragonfly (order Odonata) is a good bioindicator for aquatic and terrestrial. This study aimed to compare the community structure of Odonata in natural forests and tourist sites. The method of collecting imago Odonata was done by direct searching, samples were captured using sweep netting. The results showed that the dragonflies found in all locations consisted of the same family, 2 families (Gomphidae and Libellulidae) from the suborder Anisoptera and 6 families (Calopterygidae, Chlorocyphidae, Coenagrionidae, Euphaidae Platycnemididae, and Platystictidae) from the suborder Zygoptera. The total species of dragonflies found in Sokokembang were 15 species with a total of 293 individuals, Tirta Muncar 13 species of 287 individuals, Karanggondang 17 species of 276 individuals, and Curug Lawe 14 species of 242 individuals. The highest relative abundance of individuals was in the natural forest of Sokokembang is Drepanosticta spatulifera (26.28%) and in Karanggondang Vestalis luctuosa (24.64%), while in the tourist forests of Tirta Muncar and Curug Lawe were Euphaea variegata (34.84% and 28.51 %). The structure of the Odonata community is based on the Shannon-Wiener diversity index in the natural forests of Sokokembang (2.18) and Karanggondang (2.21) at the tourist sites of Tirta Muncar (1.84) and Curug Lawe (2.11). The results showed that the structure of the Odonata community based on the level of the diversity index value, evenness index, and dominance index in natural forests and tourist sites in Petungkriyono forest was not significantly different. 


Author(s):  
Kezang Choden ◽  
Bhagat Suberi ◽  
Purna Chettri

Forests are natural carbon reservoirs that play an important role in the global carbon cycle for storing large quantities of carbon in vegetation and soils. Carbon stored in pool helps in mitigating climate change by carbon sequestration. The vulnerable countries to changing climate such as Bhutan, Nepal, and India require a full understanding of carbon dynamics as well as baseline data on carbon stock potential to mitigate anticipated risks and vulnerabilities (RVs) through climate change. The scope of such RVs are trans boundary in nature, however, the comparative studies at regional scale are still scanty. Therefore, the aim of this review is to assess the carbon stock potentials of selected forest types in the eastern Himalayan area, with an emphasis on Bhutan, India, and Nepal. This review paper is based on published articles, information from websites and considerable data from National forestry reports of India and Bhutan; emphasizing on aboveground biomass and soil organic carbon stock. The review showed that carbon stock potential is highly dependent on stand density, above-ground biomass, species richness and forest types. The sub-tropical forest was found to have larger carbon capacity and sequestration potential. SOC concentration and tree biomass stocks were significantly higher at the high altitude where there is less human disturbance. In general, forest coverage has increased compare to previous year in Bhutan, India and Nepal which ultimately leads to higher carbon stock potential. It is mainly due to strong policies and different strategies for conservation of forest management have reduced mass destruction despite a growing population. Despite the rules, deforestation continues to occur at various scales. However, it can be stated that the government and citizens are working hard to increase carbon stock potential, mostly through afforestation and community forest creation. In addition, it is recommended to practice sustainable forest management, regulated and planned cutting of trees and proper forest products utilization.


Sign in / Sign up

Export Citation Format

Share Document