scholarly journals Structure, composition and carbon stocks of woody plant community in assisted and unassisted ecological succession in a Tamaulipan thornscrub, Mexico

2021 ◽  
Vol 94 (1) ◽  
Author(s):  
Eduardo Alanís-Rodríguez ◽  
Víctor M. Molina-Guerra ◽  
Alejandro Collantes-Chávez-Costa ◽  
Enrique Buendía-Rodríguez ◽  
Arturo Mora-Olivo ◽  
...  

Abstract Background Ecological restoration is a process that helps the recovery of an ecosystem that has been degraded, damaged or destroyed. The success of restoration actions depend on the understanding of the processes, mechanisms and factors that guide vegetation dynamics. The restoration of plant communities can be made by unassisted (passive restoration, where the community recover by itself) and assisted (active restoration) ecological succession. It is imperative to know the scope of both types of activities to guide future restoration actions by evaluating the properties and functioning of the intervened communities. Methods Variance analysis of the carbon (C) stocks, basal area, canopy area, Shannon–Weaver index values, specific richness and abundance of three Tamaulipan thornscrub communities (assisted natural succession area, unassisted natural succession area and control area) was performed. Furthermore, a similarity analysis between the sampling areas using the floristic composition (abundance) was performed. Results In total, 11 families, 17 genera and 20 species of vascular plants were registered. The richness of species and abundance ranked as follows per area: assisted ecological natural succession > control > unassisted ecological natural succession. The species composition between sampling areas showed a low number of common species between plant communities. Conclusions The values of species richness, diversity, abundance, basal area, and canopy area of the assisted natural succession vegetal community was statistical similar to the control plan community. The values of C stocks showed that assisted ecological succession could recover not only structure and composition attributes but also this key ecosystem property.

2016 ◽  
Vol 8 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Sudam Charan SAHU ◽  
H.S. SURESH ◽  
N.H. RAVINDRANATH

The study of biomass, structure and composition of tropical forests implies also the investigation of forest productivity, protection of biodiversity and removal of CO2 from the atmosphere via C-stocks. The hereby study aimed at understanding the forest structure, composition and above ground biomass (AGB) of tropical dry deciduous forests of Eastern Ghats, India, where as a total of 128 sample plots (20 x 20 meters) were laid. The study showed the presence of 71 tree species belonging to 57 genera and 30 families. Dominant tree species was Shorea robusta with an importance value index (IVI) of 40.72, while Combretaceae had the highest family importance value (FIV) of 39.01. Mean stand density was 479 trees ha-1 and a basal area of 15.20 m2 ha-1. Shannon’s diversity index was 2.01 ± 0.22 and Simpson’s index was 0.85 ± 0.03. About 54% individuals were in the size between 10 and 20 cm DBH, indicating growing forests. Mean above ground biomass value was 98.87 ± 68.8 Mg ha-1. Some of the dominant species that contributed to above ground biomass were Shorea robusta (17.2%), Madhuca indica (7.9%), Mangifera indica (6.9%), Terminalia alata (6.9%) and Diospyros melanoxylon (4.4%), warranting extra efforts for their conservation. The results suggested that C-stocks of tropical dry forests can be enhanced by in-situ conserving the high C-density species and also by selecting these species for afforestation and stand improvement programs. Correlations were computed to understand the relationship between above ground biomass, diversity indices, density and basal area, which may be helpful for implementation of REDD+ (reduce emissions from deforestation and forest degradation, and foster conservation, sustainable management of forests and enhancement of forest carbon stocks) scheme.


2018 ◽  
Vol 106 (5) ◽  
pp. 2031-2042 ◽  
Author(s):  
Amandine Erktan ◽  
Catherine Roumet ◽  
Diane Bouchet ◽  
Alexia Stokes ◽  
François Pailler ◽  
...  

2012 ◽  
Vol 34 (2) ◽  
pp. 219 ◽  
Author(s):  
Megan K. Good ◽  
Jodi N. Price ◽  
Peter J. Clarke ◽  
Nick Reid

Clearing of native vegetation and changes to disturbance regimes have resulted in dense regeneration of native trees and shrubs in parts of Australia. The conversion of open vegetation to dense woodlands may result in changes to the composition of plant communities and ecosystem function if structure, composition and function are tightly linked. Widespread clearing of the floodplain tree Eucalyptus coolabah subsp. coolabah (coolibah), in New South Wales, Australia, has led to state and federal listings of coolibah woodland as an endangered ecological community. Dense regeneration of coolibah in the mid 1970s, however, also resulted in its listing as an ‘invasive native species’ in NSW, meaning it can be legally cleared under certain conditions. Dense regeneration could be a novel state dissimilar to the threatened community or it could represent the next generation of coolibah woodlands and may contribute to passive restoration of heavily cleared landscapes. This study investigated if dense stands are distinct from remnant woodland by comparing floristic composition of the ground-storey community and top-soil properties of four coolibah vegetation states: derived grassland, derived degraded grassland, dense regeneration and remnant woodland. Ground-storey composition was found to overlap broadly among states regardless of tree density. Most species were common to all states, although dense regeneration contained characteristic woodland species that were absent from grasslands. The carbon : nitrogen ratio of the soil was significantly higher in dense regeneration and remnant woodland than in either of the grassland states, indicating that the woody states are broadly similar in terms of nutrient cycling. The study demonstrates that structurally different vegetation states (grasslands, woodlands and dense regeneration) are not associated with distinct plant communities. The results also suggest that grazing management has a more pronounced effect on ground-storey composition of plant communities than tree density and that well managed derived grasslands and dense regeneration are floristically similar to remnant woodlands. Since dense regeneration and remnant woodlands are not floristically distinct from one another, dense regeneration could contribute to the conservation of endangered coolibah woodlands in cleared agricultural landscapes.


2005 ◽  
Vol 53 (7) ◽  
pp. 639 ◽  
Author(s):  
B. P. Harms ◽  
R. C. Dalal ◽  
A. P. Cramp

Changes in soil carbon (C) and nitrogen (N) stocks following tree clearing were estimated at 32 rangeland sites in central and southern Queensland by using paired-site sampling. When corrected for soil bulk-density differences at each site, average soil C across all sites decreased after tree clearing by 8.0% for 0–0.3-m soil depth, and by 5.4% for 0–1.0-m depth; there were corresponding declines in soil C of 2.5 and 3.5tha–1, respectively. Mean soil C stocks (excluding surface litter, extractable roots and coarse charcoal) at uncleared sites were 29.5tha–1 for 0–0.3-m soil depth, and 62.5tha–1 for 0–1.0-m depth. Mean soil C stocks (0–0.3m) were 41% of the mean total C for the soil–plant system (soil + litter/woody debris + stand biomass) at uncleared sites. Soil C decline (0–0.3m) accounted for approximately 7% of the average total C lost because of land clearing across all sites. Soil C stocks at uncleared sites were correlated with tree basal area, clay content and soil phosphorus (P) content. Changes in soil C after tree clearing were strongly correlated to initial soil C contents at the uncleared sites, and were associated with particular vegetation groups and soil types. Changes in soil N were strongly correlated with changes in soil C; however, the average change in soil N across all sites was not significant. Given the size of the C and N pools in rangeland soils, the factors that influence soil C and soil N dynamics in rangeland systems need to be better understood for the effective management of C stocks in these soils.


2015 ◽  
Vol 30 (6) ◽  
pp. 1005-1014 ◽  
Author(s):  
Anna Markowicz ◽  
Gabriela Woźniak ◽  
Sławomir Borymski ◽  
Zofia Piotrowska-Seget ◽  
Damian Chmura

2005 ◽  
Vol 15 (3) ◽  
pp. 554-559 ◽  
Author(s):  
Mack Thetford ◽  
Debbie Miller ◽  
Kathryn Smith ◽  
Mica Schneider

Survival and subsequent growth of two beach species produced in containers of differing volume and depth were evaluated following transplant on Eglin Air Force Base, Santa Rosa Island, Fla. Rooted cuttings of gulf bluestem (Schizachyrium maritimum) were produced in four container types: 1-gal (gallon), 0.75-gal treepot, 1-qt (quart), or 164-mL Ray leach tube (RLT) containers. Root and shoot biomass of gulf bluestem harvested after 12 weeks in container production were greatest for plants grown in treepot containers and root: shoot ratio decreased as container size increased. Regardless of container size, survival of beach-planted gulf bluestem was 100%. Basal area of plants from standard gallon and treepot containers was similar 11 months after transplant and basal area for plants from treepot containers remained greater than plants from quart or RLT containers. Effect of planting zone [92, 124, 170, and 200 m landward of the Gulf of Mexico (Gulf)] on transplant survival was also evaluated for inkberry (Ilex glabra). Seedling liners of inkberry were produced in 3-gal treepot or gallon containers. Inkberry was taller when grown in 3-gal treepot containers than when grown in gallon containers. Regardless of container size, all inkberry planted 92 m from the Gulf died. Inkberry survival (>75%) when grown in 3-gal treepot containers was two to six times greater than plants grown in gallon containers (15%, 50%, 40%; 124, 170, and 200 m from Gulf, respectively). After 15 months, inkberry grown in 3-gal treepot containers remained larger with 1.5 times the mean maximum height and twice the mean canopy area compared to those grown in gallon containers.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 674
Author(s):  
Hansol Lee ◽  
Bong Soon Lim ◽  
Dong Uk Kim ◽  
A Reum Kim ◽  
Jae Won Seol ◽  
...  

This study was carried out to clarify the vegetation decline due to air pollutants emitted in the process of industrial activities and the passive restoration of the vegetation due to socioeconomic changes after economic growth. To achieve this goal, we investigated the spatial distribution of vegetation, differences in species composition and diversity among vegetation types different in damage degree, vegetation dynamics, the age structure and annual ring growth of two dominant plant species, and the landscape change that occurred in this area over the last 50 years. Plant communities tended to be spatially distributed in the order of grassland, shrubland (dominated by Styrax japonicus Siebold and Zucc. community), and forests (dominated by Pinus thunbergii Parl. and Pinus densiflora Siebold and Zucc. communities), with increasing distance from the pollution source. The result of stand ordination based on vegetation data reflected the trend of such a spatial distribution. Species richness evaluated based on the species rank dominance curve was the highest in shrubland and the lowest in grassland; species richness in forests was intermediate. The size class distribution of woody plant species in four plant communities composing three vegetation types showed the possibility of them being replaced by forest in the late successional stage. However, the density of successor trees was relatively low, whereas the density of shrubby plants, which are resilient to air pollution, was very high. The age class distribution of a dominant species forming shrubland and pine forest showed that most of them were recruited after industrialization in this area. The period when young individuals in both vegetation types were recruited corresponded to the period when the annual ring growth of the pine trees that survived air pollution was reduced. An analysis of the landscape change in this area indicated that coniferous forest and agricultural field decreased greatly, whereas industrial area, residential area, mixed forest, and broadleaved forest showed increasing trends since construction of the industrial complex. As a result, the decrease in coniferous forest is usually due to vegetation decline and partially to succession, as the pine trees dominating the forest are not only sensitive to air pollution but are also shade-intolerant. The increase in mixed and broadleaved forests reflects vegetation decline or succession. Vegetation decline progressed for about 30 years after the construction of the industrial complex; it has begun to be restored passively since then, although the change has been slow. These results are in line with the environmental Kuznets curve hypothesis that environmental degradation increases in the early stages of economic growth to a certain point, and, after a turning point, economic development leads to environmental improvements—thus, there is an inverted U-shaped relationship between economic growth and environmental degradation.


2010 ◽  
Vol 27 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Maira Smith ◽  
Bruce Walker Nelson

Abstract:Forests dominated by semi-scandent woody bamboos of the genus Guadua cover about 165 000 km2 of the south-west Amazon. Because many woody bamboo species are favoured by disturbance some authors have inferred this landscape to be a consequence of indigenous or natural disturbance. As seen in satellite images, the rounded edges of some bamboo-dominated forests indicate expansion into surrounding forest. These edges are unrelated to topography and resemble the borders of ground fires in unlogged Amazon forests, suggesting that bamboo may have been favoured by past fires. We studied the recovery of Guadua sarcocarpa and its competitors in the face of simulated fire by cutting all plant stems at ground level in ten 100-m2 plots, compared with ten control plots, and by burning a 2500-m2 plot. In the clear-cuts, bamboos recovered more successfully than did palms and dicots, by two measures: biomass accumulated and per cent recovery of pre-disturbance biomass. Resprouted bamboo attained higher stem densities than in control sites at 11 mo. In the burn plot, bamboo basal area recovered to pre-burn levels after 2 y and approached that of an undisturbed control area after 3 y. Though other natural disturbances are relevant, we conclude that forest fires should favour the spread and dominance of Guadua species in the south-west Amazon.


2018 ◽  
Vol 15 (11) ◽  
pp. 3377-3390 ◽  
Author(s):  
Victoria Meyer ◽  
Sassan Saatchi ◽  
David B. Clark ◽  
Michael Keller ◽  
Grégoire Vincent ◽  
...  

Abstract. Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (∼ 25–30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha−1, bias = −0.63 Mg ha−1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA–AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.


2011 ◽  
Vol 26 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Ching-Hsun Huang ◽  
Christopher Sorensen

Abstract The goals of this study were to promote restoration of forest ecosystems through fire hazard reduction treatments and to evaluate potential economic benefits of carbon credits to the Navajo Nation. We used the historic Navajo Nation's Continuous Forest Inventory data to calibrate the Forest Vegetation Simulator (FVS) with growth increments and used the FVS to run simulations that encompass the next 50 years. We calculated C revenues using two carbon accounting approaches: (1) reduced buffer pool under the Climate Action Reserve protocol and (2) increased C stocks based on with-and-without analysis. We investigated nine C price scenarios, including constant- and rising-price trajectories; performed discounted cash flow analyses; and calculated net present worth (NPW). When timber was the only marketable output, using a real alternative rate of return (ARR) of 4%, the NPW of target basal area (BA) 40, 70, and 100 ft2/ac were −$144.89, −$267.98, and −$308.57/ac, respectively. When both timber and C were marketable outputs, with a C price of $3/ton, the NPW of target BAs of 40, 70, and 100 ft2/ac were increased to −$119.26, −$256.83, and −$306.31, respectively, under the first accounting approach, and were increased to $168.62, −$57.29, and −$184.09, respectively, under the second accounting approach. Our results indicate that C accounting method, C price, and landowner's ARR affect forest landowner's profitability in participating in the C market.


Sign in / Sign up

Export Citation Format

Share Document