scholarly journals Study on effect of laboratory roller compaction on unconfined compressive strength of lime treated soils

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sureka Nagesh ◽  
H. S. Jagadeesh ◽  
K. S. Nithin

AbstractExpansive soils are problematic due to their swell—shrinkage behavior and low compressive strength. They are modified generally with additives such as lime, fly ash, and various other inorganic and organic materials. Chemical stabilization treatments can improve expansive soil properties for its reuse in geotechnical applications. The present study investigates the properties of two types of subgrade soil treated with Lime and compacted by three different methods in the laboratory. The study is mainly focused to bring out the effect of different methods of compaction on the unconfined compressive strength of Lime treated soils and untreated soils. Laboratory investigation included pH, Atterberg limits, cation exchange capacity (CEC), compaction, unconfined compression strength (UCS), California Bearing Ratio (CBR), Scanning Electron Micrographs (SEM) and EDAX before and after lime treatment. Tests were performed on lime treated soils (2, 4, 6 and 8% of lime). The soil samples for unconfined compressive strength test were prepared by static, dynamic and roller compaction methods in the laboratory. Roller compaction was performed using indigenously fabricated Roller compactor cum Rutting Analyzer (RCRA). The results indicate that dry unit weight and UCS of roller compacted lime treated soil is lower than that of dynamic compacted soil. However, dry unit weight and UCS of lime treated roller compacted soil are closer to that of statically compacted soil. Cation exchange capacity of both soils before and after treatment with lime were examined, CEC reduced with increase in lime content.

1968 ◽  
Vol 48 (1) ◽  
pp. 53-63 ◽  
Author(s):  
J. S. Clark ◽  
W. E. Nichol

Heating in hydrogen peroxide, dilute oxalic acid, and dilute aluminum oxalate did not change the effective cation exchange capacity (CEC) or the pH-7 CEC of Wyoming bentonite and Alberni clay soil containing excess Al(OH)x. This indicated that treatment of soils with H2O2 to oxidize organic matter and the possible production of oxalates during oxidation did not change the CEC values of the inorganic fraction of soils even if some clay exchange sites were blocked by hydrous oxides of Al.With soils of pH less than approximately 5.4, oxidation of organic matter did not change the effective CECs although the pH-7 CEC values were decreased. Thus, organic matter in acid soils appeared to have little or no effective CEC. Because of this and the negligible effect of H2O2 oxidation on the CEC values of clays, the difference of the pH-7 CEC of soils before and after H2O2 oxidation provided a simple means of estimating the amount of organic pH-dependent CEC in acid soils.The amount of organically derived pH-dependent CEC was determined in a number of soils by means of peroxide oxidation. The technique provided a useful indication of the quantities of sesquioxide–organic matter complexes accumulated in medium- and fine-textured soils.


2021 ◽  
Vol 1042 ◽  
pp. 145-150
Author(s):  
Anuchit Uchaipichat

This research investigated the compressive strength of cemented soils admixed with saturated granular activated carbon (GAC). The saturated GAC was obtained from the water filtration system. A series of unconfined compressive strength was performed on both compacted soil-cement specimens and compacted soil-GAC-cement specimens with GAC content of 30 percent. All specimens were prepared by compaction with energy equivalent to the modified Proctor test. The results from modified Proctor tests showed that the maximum dry unit weight and the optimum moisture content of soil-GAC sample was less than those of soil sample. From the unconfined compression tests, there was tiny development of strength for both types of specimens with cement content of 1 percent throughout the curing period of 28 days. For both types of specimens with cement content of 2 and 3 percent, the significant development of strength occurred after curing for 3 days. The strength of specimens typically increased with increasing cement content. Generally, the strength of compacted soil-GAC-cement specimens was less than that of compacted soil- cement specimens. It was also observed that the relationships between normalized compressive strength ratio and curing period was unique for the specimens with the same cement content.


1970 ◽  
Vol 75 (2) ◽  
pp. 365-367 ◽  
Author(s):  
T. M. Addiscott

Two methods have been used previously to resolve the ‘mineral’ and ‘organic’ fractions of the cation exchange capacities of soils. Williams (1932) and Hallsworth & Wilkinson (1958) used multiple regression analysis to relate cation exchange capacity (CEC) in several soils to percentage organic matter (OM) and percentage clay, and thence to calculate the average values of the CECs of OM and clay. For individual soils, Davies & Davies (1965) and Clark & Nichol (1968) measured the CEC before and after oxidizing the OM with hydrogen peroxide.


2015 ◽  
Vol 23 (2) ◽  
pp. 1-8 ◽  
Author(s):  
Vidya Tilak B. ◽  
Rakesh Kumar Dutta ◽  
Bijayananda Mohanty

Abstract This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite – lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.


2014 ◽  
Vol 22 (4) ◽  
pp. 35-44 ◽  
Author(s):  
Sujeet Kumar ◽  
Rakesh Kumar Dutta ◽  
Bijayananda Mohanty

Abstract Engineering properties such as compaction, unconfined compressive strength, consistency limits, percentage swell, free swell index, the California bearing ratio and the consolidation of bentonite stabilized with lime and phosphogypsum are presented in this paper. The content of the lime and phosphogypsum varied from 0 to 10 %. The results reveal that the dry unit weight and optimum moisture content of bentonite + 8 % lime increased with the addition of 8 % phosphogypsum. The percentage of swell increased and the free swell index decreased with the addition of 8 % phosphogypsum to the bentonite + 8 % lime mix. The unconfined compressive strength of the bentonite + 8 % lime increased with the addition of 8 % phosphogypsum as well as an increase in the curing period up to 14 days. The liquid limit and plastic limit of the bentonite + 8 % lime increased, whereas the plasticity index remained constant with the addition of 8 % phosphogypsum. The California bearing ratio, modulus of subgrade reaction, and secant modulus increased for the bentonite stabilized with lime and phosphogypsum. The coefficient of the consolidation of the bentonite increased with the addition of 8 % lime and no change with the addition of 8 % phosphogypsum.


Author(s):  
Bo Yang ◽  
Yang Zhang ◽  
Bora Cetin ◽  
Halil Ceylan

Concrete grinding residue (CGR) is a slurry byproduct produced from diamond grinding operations used to smooth concrete pavement surface. As a waste material, CGR consists of cooling water for blades and concrete fines from the removed concrete layer. Since the composition of CGR reflects high pH, it can be a critical environmental issue and should be managed properly to reduce its impact to the ecological system. To understand the current management practices of CGR throughout the U.S.A., a comprehensive review of state regulations and a survey of departments of transportation and contractors were conducted in this study, with results showing that in many states detailed guidance for disposal of CGR to reduce risks was lacking. In addition, this study investigated the potential use of CGR for roadbed soil stabilization. To evaluate the performance of CGR for soil stabilization purpose, this study mixed 10%, 20%, 30%, and 40% of CGR by weight with two types of soils classified as A-4 and A-6 according to AASHTO. Unconfined compressive strength and California bearing ratio, pH, electrical conductivity, alkalinity, and cation-exchange capacity tests were conducted on specimens. Results of the strength tests showed that the soils treated with 20% of CGR had the highest strength. Other laboratory tests revealed that CGR treatment could reduce the maximum dry unit weight (γdmax) and plasticity and increase the pH, alkalinity, electrical conductivity and cation-exchange capacity of soils.


2021 ◽  
Vol 2040 (1) ◽  
pp. 012024
Author(s):  
Yimam Mohammed Yimer ◽  
A. Paul Makesh ◽  
SalihaShukri Muhammed

Abstract Correlation of soil parameters has undeniable benefit in the determination of engineering properties of soil to solve problems in geotechnical Engineering area. The tests were conducted within geotechnical laboratory. These tested soil parameters, used in the correlation analysis are unconfined compressive strength, bulk unit weight and dry unit weight. The aim of this study is proposing a relationship in between the strength parameter with some of the index properties of soils using statistical regression analysis. The linear regression analyses have been done for prediction of unconfined compressive strength (qu ) from bulk and dry unit weight as model-1 and model-2 respectively. And dry unit weight was predicted from bulk unit weight as model-3. Model-4 represents the multiple linear regression analysis to predict qu . The health of developed models is measured by coefficient of determination (R 2) values. Though, model-1, model-2, model-3 and model-4 have R – squared values of 0.9112, 0.9333, 0.9109 and 0.9452 respectively. Therefore, they are correlated strongly and positively. The prediction of unconfined compressive strength of these soils correlated in linear regression, are fairly determined with Model-2 compared with model-1 and model-4 (MLR).


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Mardi Wibowo

Since year 1977 until 2005, PT. ANTAM has been exploited nickel ore resources at Gebe Island – Center ofHalmahera District – North Maluku Province. Mining activity, beside give economically advantages also causedegradation of environment quality espicially land quality. Therefore, it need evaluation activity for change ofland quality at Gebe Island after mining activity.From chemical rehabilitation aspect, post mining land and rehabilitation land indacate very lack and lackfertility (base saturated 45,87 – 99,6%; cation exchange capacity 9,43 – 12,43%; Organic Carbon 1,12 –2,31%). From availability of nutrirnt element aspect, post mining land and rehabilitation land indicate verylack and lack fertility (nitrogen 0,1 – 1,19%). Base on that data, it can be concluded that land reclamationactivity not yet achieve standart condition of chemical land.Key words : land quality, post mining lan


Sign in / Sign up

Export Citation Format

Share Document