scholarly journals Insecticidal activity of crude extracts of three spices and commercial botanical pesticide on oriental fruit fly under laboratory conditions

2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Juliana Amaka Ugwu ◽  
Olajumoke Yemisi Alabi ◽  
Olawale Julius Aluko

Abstract Background The uses of botanical pesticides in pest management are currently on remarkable increase due to their efficacy, biodegradability, environment-friendly, and availability. Ethanol extracts of three spices (Piper guineense, Aframomum melegueta, Zingiber officinale) and commercial botanical pesticide AzaSol (6% azadirachtin) were assessed for contact toxicity, residual effects, and for their potential in soil application against pupariating larvae of oriental fruit fly (Bactrocera dorsalis) in the laboratory at ambient temperature of 27 ± 2 °C and relative humidity of 75–80%. The extracts and AzaSol were applied at 1:1.5 w/v concentration while cypermethrin was introduced as standard check and applied at 5 ml/liter of water. Results All the treatments were very effective against B. dorsalis in contact toxicity and residual affects recording 89.4–100% larval mortality at 24 h post-application. Z. officinale and cypermethrin had similar contact and residual effects on B. dorsalis, both recording 100% larval mortality at 24 h post-exposure. Piper guineense showed higher residual effects than contact effects, while A. melegueta and AzaSol showed better contact effects than residual effects against B. dorsalis larvae. AzaSol was the most effective among the botanicals in reducing the adult emergence and in enhancing larval mortality (96.7%) on treated soil followed by Piper guineense (83.3%). The efficacy of AzaSol on the treated soil was comparable to cypermethrin. All the extracts were significantly more effective than control in enhancing pupariating larvae mortality and in reducing adult emergence on treated soil. Conclusion Ethanol extracts of P. guineense and A. melegueta were highly promising against B. dorsalis on treated soil and could be adopted in soil application targeting puparia under the tree canopies as part of integrated pest management of B. dorsalis in orchards.

2020 ◽  
Vol 81 (1) ◽  
Author(s):  
Kayode David Ileke ◽  
Jacobs Mobolade Adesina ◽  
Luke Chinaru Nwosu ◽  
Abimbola Olagunju

Abstract Background Powders and extracts of Piper guineense seeds and leaves were assessed for insecticidal activities against Callosobruchus maculatus in the laboratory at temperature and relative humidity of 29.6 °C and 75.9%, respectively. Bioactive compounds in P. guineense leaves and seeds were also investigated. The powders were tested at rates 1.0, 2.0 and 4.0 g/20 g cowpea seeds while extracts were tested at 1.0, 2.0 and 3.0%. Results Results of contact toxicity assay of the seed powder caused 100% adult mortality at 96 h post-treatment period whereas leaf powder evoked 90% adult mortality within the same period at concentration of 1.0 g/20 g cowpea seeds. Low adult emergence was observed on cowpea seeds treated with 1 g of seed powder with percentage adult emergence of 10.0% and inhibition rate (IR) of 97.5%. Beetle Perforation Index (BPI) obtained from treated cowpea seeds was significantly different (P < 0.05) from BPI of untreated seeds. Extracts of P. guineense seed were more toxic than seed powder. Piper guineense seed extract caused 87.5% adult mortality of C. maculatus while leaf extract caused 70.0% adult mortality within 24 h of infestation at concentration of 1%. Progeny development of C. maculatus was completely inhibited in cowpea treated with 2% and 3% leaf and seed extracts of P. guineense. β-Pinene was the most abundant active compound in P. guineense seed (55.6%) and leaf (48.4%). β-Phellandrene occurred 38.2% in seeds while Ocimene had the least value of 0.2% in seed and 0.5% in leaf. Conclusion The study showed that P. guineense seed powder and extracts were more effective than leaf powder and extract. Utilization of plant products as alternative to synthetic insecticides in protecting cowpea seeds against C. maculatus should be encouraged for enhanced food safety and security. Piper guineense is used as spice and medicine and interestingly safe for human use.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Juliana Amaka Ugwu

Abstract Background Iroko gall bug, Phytolyma fusca Walker, is a major insect pest of Milicia excelsa (Iroko) seedling hampering its propagation in West Africa. Milicia excelsa is an indigenous forest timber tree in the tropical rain forest of West Africa with a very high value in international trade due to its wood quality. Sustainable management of P. fusca infestations on Iroko seedlings have not been achieved due to their cryptic nature and multivoltine generations. This study evaluated the residual and contact effects of crude ethanol and aqueous extracts of four plants (Azadirachta indica, Jatropha curcas, Piper guineense, and Aframomum melegueta) on adult P. fusca in the laboratory and field. Results All the extracts had residual effects and contact effects on adult insects in the laboratory at 75% and 100% concentrations of applications. Azadirachta indica, P. guineense, and A. melegueta gave 80–100% adult mortality at both concentrations in the laboratory; their efficacies were comparable to cypermethrin. The ethanol extracts of P. guineense and A. indica were more effective than other extracts in protecting the seedlings against Phytolyma infestations in the field. They significantly (p < 0.01) reduced infestation compared to other extracts and control. Ethanol extracts of the tested plant materials were more effective than their aqueous extracts both in the laboratory and field. Conclusion The results proved that P. guineense and A. indica extracts were very potent and promising in protecting Milicia excelsa seedlings against Phytolyma fusca infestations and they can be used in the early management of Phytolyma infestations in the field.


2016 ◽  
Vol 107 (2) ◽  
pp. 217-224 ◽  
Author(s):  
S.E. Samri ◽  
M. Baz ◽  
I. Ghalbane ◽  
S. El Messoussi ◽  
A. Zitouni ◽  
...  

AbstractThe Mediterranean fruit fly (medfly),Ceratitis capitata, is considered the most important fruit pest worldwide. Its management is mainly based on the use of chemical insecticides. Although these conventional pesticides are effective at high doses, they cause considerable human health and environment problems. Thus, the aim of this study was to assess insecticidal activity of Moroccan actinobacteria againstC. capitata. A total of 12 preselected actinobacteria isolated from various Moroccan habitats were screened for their insecticidal activity against larvae, pupae and adults ofC. capitata. Four actinobacteria isolates were significantly active against the first-instar larvae, and nine were active against the medfly adult, while no significant mortality was obtained against the third-instar larval and pupal stages. Among the selected isolates, the biological screening revealed that strainStreptomycesLD-37, which showed 99.4% similarity withStreptomyces phaeochromogenes, exhibited the maximal corrected larval mortality of 98%. Moreover, the isolates AS1 and LD-37 showed the maximum significant corrected mortality against adults of 32.5 and 28.2%, respectively. The crude extract obtained from a fermented culture of strainS. phaeochromogenesLD-37 was separated into six fractions by thin layer chromatography. Fractions F3 and F4 caused a significant corrected larval mortality of 66.7 and 53.3%, respectively; whereas the maximum reduction in adult emergence was obtained with fraction F4. This finding could be useful for utilizingS. phaeochromogenesLD-37 as an alternative to chemical insecticides in pest management ofC. capitata.


2019 ◽  
Vol 112 (6) ◽  
pp. 2808-2816 ◽  
Author(s):  
Suhana Yusof ◽  
Ahmad Zainuri Mohamad Dzomir ◽  
Salmah Yaakop

Abstract The aim of this study was to investigate the effect of gamma irradiation on survivability (adult emergence, sex ratio, adult longevity), fecundity (eggs hatchability, number of eggs produced), and morphological differences in the size of the ovary and testes of unirradiated and irradiated adults of Oriental fruit fly [Bactrocera dorsalis (Hendel)]. A dose of 100 Gy was determined as the minimum needed for inhibitory effects against B. dorsalis that would not deter adult emergence, sex ratio (male:female), and adult longevity, with 82.6 ±7.02, 1:1.09, and 107 ± 24.5, respectively. Doses from 50 to 400 Gy range did not completely prevent the adult emergence; however, the emergence decreased by increasing the radiation dose. Adult survivability significantly decreased among all the treatment groups of B. dorsalis, except for the 50 Gy and unirradiated flies. At a dose of 50 Gy, fertile females showed a significant reduction in fecundity by not producing eggs after mating with the sterile males. Meanwhile, the number of eggs laid decreased with increasing dose and no fertile egg was hatched starting at 100 Gy of irradiation. Testes and ovaries of 20-d old flies irradiated as pupae were smaller than those of control flies. In this study, 100 Gy was concluded as the minimum effective dose for the disinfestation and sterilization of B. dorsalis puparia. Results represent new findings used as a basis for sterile insect technique and quarantine programs for managing B. dorsalis, particularly in Malaysia.


2011 ◽  
Vol 36 (5) ◽  
pp. 547-549
Author(s):  
Ying-gang DU ◽  
Hai-bo XIA ◽  
Jia-hua CHEN ◽  
Qing-e JI

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 533e-533
Author(s):  
Krista C. Shellie

The objective of this research was to investigate whether the medium used to transfer heat to a commodity influenced the mortality of Mexican fruit fly larvae. A similar 2-h heat dose was delivered to grapefruit via immersion in a variable temperature water bath or via exposure to a rapidly circulating gas. The concentration of oxygen and carbon dioxide inside the grapefruit was analyzed at 30-min intervals and grapefruit center temperatures recorded every 60 s during heating. The mortality of larvae located inside grapefruit during heating in a controlled atmosphere or in hot water was significantly higher than that of larvae located inside grapefruit heated in air. The internal atmosphere of grapefruit heated in a controlled atmosphere or in hot water contained significantly higher levels of carbon dioxide and lower levels of oxygen than grapefruit heated in air. Larval mortality was compared after larvae were heated in media by rapidly circulating air or by an atmosphere containing 4 kPa of oxygen and 18 kPa of carbon dioxide to evaluate whether the altered atmosphere or a heat-induced fruit metabolite was responsible for enhanced mortality. The significantly higher mortality of larvae heated in media in the presence of an altered atmosphere suggested that the altered atmosphere enhanced larval mortality. Results from this research suggest that reducing oxygen and or increasing the level of carbon dioxide during heating can enhance mortality of the Mexican fruit fly and potentially reduce the heat dose required for quarantine security.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Ghulam Sarwar ◽  
Naeem Arshad Maan ◽  
Muhammad Ahsin Ayub ◽  
Muhammad Rafiq Shahid ◽  
Mubasher Ahmad Malik ◽  
...  

Abstract Background The armyworms, Spodoptera exigua (Hübner), and S. litura (Fabricius) (Lepidoptera: Noctuidae) are polyphagous pests of many cash crops. Heavy crop losses have been reported for the fruit and vegetable crops each year owing to the diverse impact on global economies. The present study was aimed to sort out a novel method of pest control using the insect’s own nucleopolyhedrosis virus (NPV) alone and in combination with a new chemistry insecticide chlorantraniliprole. Results In the study, the effect of indigenous isolated nucleopolyhedrovirus (NPV) and the chemical insecticide (chlorantraniliprole) formulations against the 2nd and 4th larval instars of S. litura and S. exigua, collected from the different geographical region of Punjab (Pakistan) province, was evaluated. Three concentrations of the NPV isolate, sub-lethal (1 × 104, 6 × 104 POB ml−1), lethal (3 × 105 POB ml−1), and chlorantraniliprole 0.01 μl l−1, were applied alone and in combination against the 2nd and 4th larval instars of both pest species. The lethal concentration of NPV + chlorantraniliprole exhibited synergistic interaction and caused high larval mortality against both instars, while in all other combinations, additive effect was observed. Moreover, NPV + chlorantraniliprole at lethal concentration exhibited decreased pupation, adult emergence, and egg eclosion. Conclusion The implications of using NPV alone and in combination with an insecticide are discussed briefly in this study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abhay Punia ◽  
Nalini Singh Chauhan ◽  
Drishtant Singh ◽  
Anup Kumar Kesavan ◽  
Sanehdeep Kaur ◽  
...  

AbstractThe antibiosis effect of gallic acid on Spodoptera litura F. (Lepidoptera: Noctuidae) and its parasitoid evaluated by feeding six days old larvae on artificial diet incorporated with different concentrations (5 ppm, 25 ppm, 125 ppm, 625 ppm, 3125 ppm) of the phenolic compound revealed higher concentration (LC50) of gallic acid had a negative impact on the survival and physiology of S. litura and its parasitoid Bracon hebetor (Say) (Hymenoptera:Braconidae). The mortality of S. litura larvae was increased whereas adult emergence declined with increasing concentration of gallic acid. The developmental period was delayed significantly and all the nutritional indices were reduced significantly with increase in concentration. Higher concentration (LC50) of gallic acid adversely affected egg hatching, larval mortality, adult emergence and total development period of B. hebetor. At lower concentration (LC30) the effect on B. hebetor adults and larvae was non-significant with respect to control. Gene expression for the enzymes viz., Superoxide dismutase, Glutathione peroxidase, Peroxidase, Esterases and Glutathione S transferases increased while the total hemocyte count of S. litura larvae decreased with treatment. Our findings suggest that gallic acid even at lower concentration (LC30) can impair the growth of S. litura larvae without causing any significant harm to its parasitoid B. hebetor and has immense potential to be used as biopesticides.


Sign in / Sign up

Export Citation Format

Share Document