scholarly journals Bio-fertilizers’ protocol for controlling root knot nematode Meloidogyne javanica infecting peanut fields

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hamida Ahmed Osman ◽  
Hoda Hussein Ameen ◽  
Moawad Mohamed ◽  
Ghada M. El-Sayed ◽  
Mona Gergis Dawood ◽  
...  

Abstract Background Plant parasitic nematodes create serious threat to crop production. In Egypt root knot nematode, Meloidogyne spp. has been considered to be a limiting factor in the production of most crops of which the Peanut (Arachis hypogaea L.) is an important legume and oil crop. Therefore, management of root knot nematodes Meloidogyne spp. is an obligatory challenge. Microbial organisms are extensively used as eco-friendly tools for controlling plant parasitic nematodes as alternative to chemical nematicides. The effectiveness of the commercial bacterial bio-fertilizers NPK containing Bacillus polymyxa, B. circulance, B. megaterium, Pseudomans spp.; the nitrogen fixative bacteria Azotobacter chroocoocum and the bacterial isolate NRC211 were evaluated against the root knot nematode, Meloidogyne javanica infecting peanut plants under field conditions. Identification of the bacterial isolate was made through PCR amplification and sequencing of 16S rDNA gene. Results Sequencing of 16S rDNA gene revealed that the bacterial isolate NRC211 had 100% similarity with Bacillus wiedmannii strain FSL W8-0169 16S ribosomal RNA. This Bacillus was recorded for the first time under accession number LC626774 on GenBank data base as B. wiedmannii NRC211. Recorded data revealed that all the tested treatments whether single or combined in soil naturally infested with M. javanica, resulted in variable significant reduction in the nematode reproductive parameters with a considerable increase in crop production and oil content of peanut plant. These results were improved by increasing the frequency of application of the bio-agents. In this respect the repeated combined treatment of A. chroococcum and B. wiedmannii NRC211 treatment overwhelmed all other treatments in decreasing nematode reproductive parameters with percentage reductions of 94.8, 79.0 and 80.1% in M. javanica juveniles in soil, galls and egg masses, respectively. This was associated with slight increase in peanut oil content than the untreated control. The repeated combined treatment of NPK plus A. chroococcum produced the highest increase 608.7%, and 72.7% in crop production and plant growth parameters, respectively than the control. While, the oil content in this treatment was increased up to 47.4 g/kg. Conclusion It was concluded that B. wiedmanni NRC211 is an eco-friendly bio agent that can be applied with other commercial microbial bio-fertilizers in bio-integrating programs for controlling M. javanica infecting peanut plants.

2021 ◽  
Author(s):  
Radwa G. Mostafa ◽  
Aida M. El-Zawahry ◽  
Ashraf E. M. Khalil ◽  
Ameer E. Elfarash ◽  
Ali D. A. Allam

Abstract Background Plant-parasitic nematodes are extremely dangerous pests in a variety of economically important crops. The purpose of this study was a survey of all nematode species existing in banana from three sites in Assiut Governorate, Egypt and to characterize the most common species by morphological, morphometric and molecular techniques (PCR with species-specific primers). Then, study of resistance or sensitivity of some banana cultivars to root-knot nematodes.Methods and Results Four nematodes, Meloidogyne, Rotylenchulus reniformis, Helicotylenchus and Pratylenchus were isolated and identified from soil and root samples collected from banana plants. Most frequently occurring of plant parasitic nematode species in banana was Meloidogyne. Former research found differences in species and in resistance to root-knot nematodes among the examined plant cultivars. Identification of Root-knot nematodes by Characterize of morphometric, molecularly, morphological isolate of Meloidogyne related to banana plants. The results revealed that the identified nematode species, Meloidogyne javanica, is the most common plant-parasitic nematodes in all locations. Data on the susceptibility of the tested banana cultivars to M. javanica revealed that Grand Naine was highly susceptible (HS) however, Magraby was susceptible (S) but Williams and Hindi cultivars were moderately resistant (MR).Conclusions we concluded that a survey revealed the significant prevalence of Meloidogyne javanica, the most important nematodes on banana in Assiut. The morphometric, morphological, and molecular identification were harmonic with one another. In addition to the host response of certain banana cultivars, to M. javanica that resistance is of significance and can be helpful to incorporate through planning control measures for root- knot nematodes.


Nematology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Mohsen Ebrahimi ◽  
Amir Mousavi ◽  
Mohammad Kazem Souri ◽  
Navazolah Sahebani

Summary The root-knot nematode, Meloidogyne javanica, is the most damaging species of plant-parasitic nematodes in eggplant cultivation in Iran. We studied the effect of pistachio and date palm biochars, vermicompost and a mixture of each of these biochars with vermicompost on M. javanica. To investigate the effect of these organic materials on survival, hatching and attraction of the second-stage juvenile (J2) towards the root, bioassays were performed in the laboratory using extracts of organic material. Vermicompost extract increased J2 mortality and decreased hatching and the number of J2 attracted to the eggplant roots. However, either type of biochar alone or mixed with vermicompost did not cause J2 mortality, nor did they inhibit hatching and attraction of J2 towards the root. To determine the effect of organic matter on J2 invasion and reproduction, pot experiments were performed in a completely randomised design with four replications in the glasshouse. Vermicompost reduced the number of J2 that penetrated the roots, number of egg masses and the final population of M. javanica eggs and J2. The suppressing effect of vermicompost might be attributed to the release of toxic compounds such as ammonium and improved soil nutrient and plant growth, leading to plants more tolerant to nematode damage. Pistachio and date biochars alone or combined with vermicompost had no adverse effect on the nematode reproduction compared to non-treated soil. Both types of biochar reduced the suppressing effect of vermicompost, most probably due to the absorbance of suppressive compounds in vermicompost by the high surface area of the biochar.


2020 ◽  
pp. 93-98
Author(s):  
Shilpy Shakya ◽  
Bindhya Chal Yadav

Plant-parasitic nematodes have emerged as nature’s most successful among all parasites known till today. These animals have been reported from all terrains of all ecosystems. Their capability to survive on a wide diversity of the host plants, circumvent host plant defence is a few of several of their secrets making them most successful of all known parasites. Among various groups of plant-parasitic nematodes, endo-parasitic nematodes are the most damaging one and also difficult to control. Meloidogyne sps. are commonly known as root-knot nematodes. Our inability to control them is primarily due to our poor understanding of the biology of these plant parasites. Due to the availability of the complete genome sequence of few Meloidogyne species, biotechnological interventions are used to unravel the secrets of their success. Chemical controls of these nematodes are extensively reported in the literature. Due to the environmental toxicity associated with these chemicals, and restrictions on the use of chemicals against nematodes led to screening and development of eco-friendly management strategies. The present study was conducted to screen nematotoxic properties of Neem (Azadirachta indica), Jatropha (Jatropha curcas), Kachnar (Bauhinia variegate), Bel (Aegle marmelos) and Eucalyptus (Eucalyptus globules) leaf extracts against root-knot nematode Meloidogyne javanica in vitro. The aqueous extracts were used against the hatching of the nematode eggs, movement of second stage juveniles (J2) and the viability of the J2 in increasing concentration of the bioactive compound. The eggs were treated with various concentrations of the selected extracts for different time periods ranging from 24h to 6 days. A significant inhibition of egg hatching and increase in the mortality of the nematode juvenile in few of the aqueous extracts were recorded. Reduced egg hatching and increased mortality of the nematode juveniles could be maybe the indicators of the presence of anti-nematode potential in the selected plant leaves. The results from the study can pave the way for the development of eco-friendly management strategies for plant-parasitic nematodes.


Plant Disease ◽  
2004 ◽  
Vol 88 (5) ◽  
pp. 574-574
Author(s):  
A. P. Malan ◽  
R. Knoetze ◽  
H. J. Hugo

Agathosma betulina, commonly known as buchu, has been used for centuries by the indigenous people of South Africa for medicinal purposes. Currently, the essential oils from buchu are used in medicine, food flavorings, and aromatic oils. Increased exploitation of natural growing buchu in the Fynbos biome and a worldwide shortage of buchu oil encouraged commercial cultivation in South Africa. The root-knot nematode (Meloidogyne spp.) is one of the most common plant-parasitic nematodes found on commercial crops grown in the Western Cape. It has also been isolated from the soil and roots of plants in the natural Fynbos vegetation (2). In June 2003, a nursery propagating buchu plants experienced problems with poor growth. Examination of the buchu roots under a stereo microscope showed extensive galling with large numbers of female root-knot nematodes with eggsacs. Nematode extractions of the soil were also done. Only second-stage juveniles of Meloidogyne spp. (311 per 250 ml of soil) were recovered. A polymerase chain reaction (PCR)-based diagnostic method (1) was used for the identification of the root-knot nematode species. Ten intact females were dissected from the roots and individually placed directly in 5 μl drops of 1× PCR reaction buffer (16 mM [NH4]2SO4, 67 mM tris-HCL, pH 8.8, 0.1% vol/vol Tween 20) ontaining 60 μg/ml of proteinase K. The tube was kept at -80°C for a minimum of 10 min. The tube was incubated at 60°C for 15 min and 5 min at 95°C. The PCR amplifications were then prepared directly in the same tube. Amplified DNA fragments were digested with HinfI and DraI. The digested DNA was loaded on a 2% agarose gel, separated by electrophoresis, and detected by ethidium bromide staining. The digested amplified DNA fragments correspond to those of Meloidogyne javanica. Morphological characteristics were used to verify the PCR-based identification of the nematode. To our knowledge, this is the first report of M. javanica causing extensive galling on the roots of Agathosma betulina. Visual damage to the roots indicates the root-knot nematode to be an important threat to the commercial cultivation of buchu. References: (1) R. Knoetze. Potential of the polymerase chain reaction for the identification of plant-parasitic nematodes. M.Sc. thesis. University of Stellenbosch, Stellenbosch, South Africa, 1999. (2) A. J. Meyer, S. Afr. J. Enol. Vitic., 20:75, 1999.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 369
Author(s):  
Pasqua Veronico ◽  
Maria Teresa Melillo

Plant parasitic nematodes are annually responsible for the loss of 10%–25% of worldwide crop production, most of which is attributable to root-knot nematodes (RKNs) that infest a wide range of agricultural crops throughout the world. Current nematode control tools are not enough to ensure the effective management of these parasites, mainly due to the severe restrictions imposed on the use of chemical pesticides. Therefore, it is important to discover new potential nematicidal sources that are suitable for the development of additional safe and effective control strategies. In the last few decades, there has been an explosion of information about the use of seaweeds as plant growth stimulants and potential nematicides. Novel bioactive compounds have been isolated from marine cyanobacteria and sponges in an effort to find their application outside marine ecosystems and in the discovery of new drugs. Their potential as antihelmintics could also be exploited to find applicability against plant parasitic nematodes. The present review focuses on the activity of marine organisms on RKNs and their potential application as safe nematicidal agents.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Olaf Kranse ◽  
Helen Beasley ◽  
Sally Adams ◽  
Andre Pires-daSilva ◽  
Christopher Bell ◽  
...  

Abstract Plant-parasitic nematodes are a continuing threat to food security, causing an estimated 100 billion USD in crop losses each year. The most problematic are the obligate sedentary endoparasites (primarily root knot nematodes and cyst nematodes). Progress in understanding their biology is held back by a lack of tools for functional genetics: forward genetics is largely restricted to studies of natural variation in populations and reverse genetics is entirely reliant on RNA interference. There is an expectation that the development of functional genetic tools would accelerate the progress of research on plant-parasitic nematodes, and hence the development of novel control solutions. Here, we develop some of the foundational biology required to deliver a functional genetic tool kit in plant-parasitic nematodes. We characterize the gonads of male Heterodera schachtii and Meloidogyne hapla in the context of spermatogenesis. We test and optimize various methods for the delivery, expression, and/or detection of exogenous nucleic acids in plant-parasitic nematodes. We demonstrate that delivery of macromolecules to cyst and root knot nematode male germlines is difficult, but possible. Similarly, we demonstrate the delivery of oligonucleotides to root knot nematode gametes. Finally, we develop a transient expression system in plant-parasitic nematodes by demonstrating the delivery and expression of exogenous mRNA encoding various reporter genes throughout the body of H. schachtii juveniles using lipofectamine-based transfection. We anticipate these developments to be independently useful, will expedite the development of genetic modification tools for plant-parasitic nematodes, and ultimately catalyze research on a group of nematodes that threaten global food security.


2007 ◽  
Vol 47 (5) ◽  
pp. 620 ◽  
Author(s):  
B. L. Blair ◽  
G. R. Stirling

Damage to sugarcane caused by root-knot nematode (Meloidogyne spp.) is well documented in infertile coarse-textured soils, but crop losses have never been assessed in the fine-textured soils on which more than 95% of Australia’s sugarcane is grown. The impact of nematodes in these more fertile soils was assessed by repeatedly applying nematicides (aldicarb and fenamiphos) to plant and ratoon crops in 16 fields, and measuring their effects on nematode populations, sugarcane growth and yield. In untreated plant crops, mid-season population densities of lesion nematode (Pratylenchus zeae), root-knot nematode (M. javanica), stunt nematode (Tylenchorhynchus annulatus), spiral nematode (Helicotylenchus dihystera) and stubby-root nematode (Paratrichodorus minor) averaged 1065, 214, 535, 217 and 103 nematodes/200 mL soil, respectively. Lower mean nematode population densities were recorded in the first ratoon, particularly for root-knot nematode. Nematicides reduced populations of lesion nematode by 66–99% in both plant and ratoon crops, but control of root-knot nematode was inconsistent, particularly in ratoons. Nematicide treatment had a greater impact on shoot and stalk length than on shoot and stalk number. The entire community of pest nematodes appeared to be contributing to lost productivity, but stalk length and final yield responses correlated most consistently with the number of lesion nematodes controlled. Fine roots in nematicide-treated plots were healthier and more numerous than in untreated plots, and this was indicative of the reduced impact of lesion nematode. Yield responses averaged 15.3% in plant crops and 11.6% in ratoons, indicating that nematodes are subtle but significant pests of sugarcane in fine-textured soils. On the basis of these results, plant-parasitic nematodes are conservatively estimated to cost the Australian sugar industry about AU$82 million/annum.


Parasitology ◽  
1989 ◽  
Vol 98 (1) ◽  
pp. 155-164 ◽  
Author(s):  
A. F. Bird ◽  
Ingrid Bonig ◽  
A. Bacic

SummaryThe influence of various agents on the adhesion of endospores of Pasteuria penetrans to the nematode Meloidogyne javanica was studied. Similarly, but to a lesser degree, we have also studied the adhesion of conidia of the fungus Dilophospora alopecuri and the coryneform bacterium Clavibacter sp. (syn. Corynebacterium rathayi) to the nematode Anguina agrostis (syn. A. funesta). Reduction in the degree of both spore and conidial attachment following their pre-treatment with periodate and the presence of PAS staining material on spores, conidia and bacteria implicated carbohydrate in these interactions. Tests involving both unbound and FITC-bound lectins demonstrated that wheat germ agglutinin (WGA) can inhibit the degree of attachment of P. penetrans to M. javanica and that this inhibition can be overcome by pre-treatment of the lectin with N, N′-diacetyl chitobiose. Endospores of P. penetrans, amphid and buccal secretions of 2nd-stage larvae of M. javanica and the cuticle and excretory pore secretions of 2nd-stage dauer larvae of A. agrostis bound WGA, indicating that accessible N-acetyl-D-glucosamine residues are present on these structures. Endospores of P. penetrans also bound Con A, indicating the presence of accessible α-D-glucose/α-D-mannose residues on their surface.


Nematology ◽  
2021 ◽  
pp. 1-9
Author(s):  
Hung X. Bui ◽  
Johan A. Desaeger

Summary Cover crops can be a useful tool for managing plant-parasitic nematodes provided they are poor or non-hosts for the target nematode species. A glasshouse experiment was done to determine the host status of four common cover crops in Florida, sunn hemp, cowpea, sorghum sudangrass and sunflower, to pure populations of four common tropical root-knot nematode (RKN) species Meloidogyne javanica (Mj), M. incognita (Mi), M. enterolobii (Me) and M. arenaria (Ma). Tomato was included as a susceptible control. Eight weeks after nematode inoculation (WAI), tomato showed the highest root gall damage for all tested RKN species, with gall indices (GI) between 7 (Ma) and 8.5 (Me) and reproduction factor (RF) ranging from 20 (Ma) to 50 (Mj). No visible root galls were observed for any of the RKN species on sunn hemp and sorghum sudangrass at 8 WAI. However, Mj and Mi were able to reproduce slightly on sorghum sudangrass (RF = 0.02 and 0.79, respectively). Sunflower and cowpea were infected by all four tested RKN species, but host suitability varied. Sunflower root galling ranged from 1.1 (Me) to 4.5 (Mj) and RF = 3.2 (Me) to 28.7 (Mj), while cowpea root galling ranged from 0.6 (Mi) to 5.1 (Me) and RF = 0.8 (Mi) to 67.3 (Mj). Sunn hemp and, to a lesser extent, sorghum sudangrass were poor hosts to all four tested RKN species. Sunflower was a good host to all RKN species, but root gall damage and RF were lowest for Me. Cowpea was a good host to Mj, Me and Ma, but a poor host to Mi. Our results confirm and stress the importance of RKN species identification when selecting cover crops as an RKN management strategy.


EDIS ◽  
2018 ◽  
Vol 2018 (4) ◽  
Author(s):  
Mary Ann D. Maquilan ◽  
Ali Sarkhosh ◽  
Donald W. Dickson

One of the production issues that peach growers in Florida must contend with is plant-parasitic nematodes. One such species is the more recently discovered peach root-knot nematode, Meloidogyne floridensis, which is the subject of this 5-page publication. Written by Mary Ann D. Maquilan, Ali Sarkhosh, and Donald Dickson and published by the UF/IFAS Horticultural Sciences Department, July 2018. http://edis.ifas.ufl.edu/hs1320


Sign in / Sign up

Export Citation Format

Share Document