scholarly journals Persistent cognitive impairment associated with cerebrospinal fluid anti-SARS-CoV-2 antibodies six months after mild COVID-19

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Max Borsche ◽  
Dirk Reichel ◽  
Anja Fellbrich ◽  
Anne S. Lixenfeld ◽  
Johann Rahmöller ◽  
...  

AbstractNeurological long-term sequelae are increasingly considered an important challenge in the recent COVID-19 pandemic. However, most evidence for neurological symptoms after SARS-CoV-2 infection and central nervous system invasion of the virus stems from individuals severely affected in the acute phase of the disease. Here, we report long-lasting cognitive impairment along with persistent cerebrospinal fluid anti-SARS-CoV-2 antibodies in a female patient with unremarkable standard examination 6 months after mild COVID-19, supporting the implementation of neuropsychological testing and specific cerebrospinal fluid investigation also in patients with a relatively mild acute disease phase.

1986 ◽  
Vol 61 (1) ◽  
pp. 368-372 ◽  
Author(s):  
E. C. Ellison ◽  
T. T. Pappas ◽  
W. G. Pace ◽  
T. M. O'Dorisio

An apparatus is described that permits lateral ventricular cerebrospinal fluid (CSF) to be sampled or an infusion to be performed into the ventricular system in the awake canine. The device has been used in 25 dogs. CSF was sampled, and experiments involving infusions into the lateral ventricle were performed over a 6- to 24-mo period. The maximum frequency of ventricular cannulation using the apparatus was once per week. Complications occurred in 10 dogs, all of which were successfully treated, permitting experiments to continue. Three fatal complications included meningitis in one animal at 24 mo and seizures in two animals, causing death at 12 and 18 mo. Administration of peptides, bombesin, and somatostatin into the ventricular system was followed by prompt rises in bombesin and somatostatin radioimmunoactivity in the CSF. There were no parallel increases of these peptides in the peripheral blood levels up to 2 h after infusion. Peptides of this molecular weight infused with this apparatus do not seem to leak into peripheral blood. The apparatus permits repeated ventricular cannulation in the awake canine for sampling of CSF and administration of biological substances to determine specific central nervous system action.


Author(s):  
Takuya Shimura ◽  
Makoto Kurano ◽  
Yoshifumi Morita ◽  
Naoyuki Yoshikawa ◽  
Masako Nishikawa ◽  
...  

Background Invasion of the central nervous system by haematological malignancies is diagnosed by cytological analyses of cerebrospinal fluid or diagnostic imaging, while quantitative biomarkers for central nervous system invasion are not available and needed to be developed. Methods In this study, we measured the concentrations of autotaxin and soluble IL-2 receptor in cerebrospinal fluid and evaluated their usefulness as biomarkers for central nervous system invasion. Results We observed that both the autotaxin and soluble IL-2 receptor concentrations in cerebrospinal fluid were higher in subjects with central nervous system invasion than in those without, and the cerebrospinal fluid concentrations were independent from the serum concentrations of these biomarkers. ROC analyses revealed that the soluble IL-2 receptor concentration in cerebrospinal fluid was a strong discriminator of central nervous system invasion in subjects with haematological malignancies, while the autotaxin concentration in cerebrospinal fluid also had a strong ability to discriminate central nervous system invasion when the subjects were limited to those with lymphoma. The combined measurement of autotaxin and soluble IL-2 receptor in cerebrospinal fluid improved the sensitivity without notably reducing the specificity for central nervous system invasion in subjects with lymphoma when central nervous system invasion was diagnosed in cases where either value was beyond the respective cut-off value. Conclusion These results suggest the possible usefulness of soluble IL-2 receptor and autotaxin concentrations in cerebrospinal fluid for the diagnosis of central nervous system invasion.


1993 ◽  
Vol 6 (2) ◽  
pp. 118-136 ◽  
Author(s):  
A R Tunkel ◽  
W M Scheld

Bacterial meningitis remains a disease with associated unacceptable morbidity and mortality rates despite the availability of effective bactericidal antimicrobial therapy. Through the use of experimental animal models of infection, a great deal of information has been gleaned concerning the pathogenic and pathophysiologic mechanisms operable in bacterial meningitis. Most cases of bacterial meningitis begin with host acquisition of a new organism by nasopharyngeal colonization followed by systemic invasion and development of a high-grade bacteremia. Bacterial encapsulation contributes to this bacteremia by inhibiting neutrophil phagocytosis and resisting classic complement-mediated bactericidal activity. Central nervous system invasion then occurs, although the exact site of bacterial traversal into the central nervous system is unknown. By production and/or release of virulence factors into and stimulation of formation of inflammatory cytokines within the central nervous system, meningeal pathogens increase permeability of the blood-brain barrier, thus allowing protein and neutrophils to move into the subarachnoid space. There is then an intense subarachnoid space inflammatory response, which leads to many of the pathophysiologic consequences of bacterial meningitis, including cerebral edema and increased intracranial pressure. Attenuation of this inflammatory response with adjunctive dexamethasone therapy is associated with reduced concentrations of tumor necrosis factor in the cerebrospinal fluid, with diminished cerebrospinal fluid leukocytosis, and perhaps with improvement of morbidity, as demonstrated in recent clinical trials. Further information on the pathogenesis and pathophysiology of bacterial meningitis should lead to the development of more innovative treatment and/or preventive strategies for this disorder.


Brain ◽  
2021 ◽  
Author(s):  
Amanda L Gross ◽  
Heather L Gray-Edwards ◽  
Cassie N Bebout ◽  
Nathan L Ta ◽  
Kayly Nielsen ◽  
...  

Abstract GM1 gangliosidosis is a fatal neurodegenerative disease caused by a deficiency of lysosomal β-galactosidase. In its most severe form, GM1 gangliosidosis causes death by 4 years of age, and no effective treatments exist. Previous work has shown that injection of the brain parenchyma with an adeno-associated viral vector provides pronounced therapeutic benefit in a feline GM1 model. To develop a less invasive treatment for the brain and increase systemic biodistribution, intravenous injection of AAV9 was evaluated. AAV9 expressing feline β-galactosidase was intravenously administered at 1.5x1013 vector genomes/kilogram body weight to six GM1 cats at approximately 1 month of age. The animals were divided into two cohorts: 1) a long-term group, which was followed to humane endpoint, and 2) a short-term group, which was analyzed 16-weeks post treatment. Clinical assessments included neurological exams, cerebrospinal fluid and urine biomarkers, and 7-Telsa magnetic resonance imaging and spectroscopy. Postmortem analysis included β-galactosidase and virus distribution, histological analysis, and ganglioside content. Untreated GM1 animals survived 8.0 ± 0.6 months while intravenous treatment increased survival to an average of 3.5 years (n = 2) with substantial improvements in quality of life and neurologic function. Neurological abnormalities, which in untreated animals progress to the inability to stand and debilitating neurological disease by 8 months of age, were mild in all treated animals. Cerebrospinal fluid biomarkers were normalized, indicating decreased central nervous system cell damage in the treated animals. Urinary glycosaminoglycans decreased to normal levels in the long-term cohort. Magnetic resonance imaging and spectroscopy showed partial preservation of the brain in treated animals, which was supported by postmortem histological evaluation. β-galactosidase activity was increased throughout the central nervous system, reaching carrier levels in much of the cerebrum and normal levels in the cerebellum, spinal cord and cerebrospinal fluid. Ganglioside accumulation was significantly reduced by treatment. Peripheral tissues such as heart, skeletal muscle, and sciatic nerve also had normal β-galactosidase activity in treated GM1 cats. GM1 histopathology was largely corrected with treatment. There was no evidence of tumorigenesis or toxicity. Restoration of β-galactosidase activity in the central nervous system and peripheral organs by intravenous gene therapy led to profound increases in lifespan and quality of life in GM1 cats. This data supports the promise of intravenous gene therapy as a safe, effective treatment for GM1 gangliosidosis.


2021 ◽  
Vol 57 (2) ◽  
pp. 191-198
Author(s):  
Sanda Moslavac ◽  
Mislav Škrobo ◽  
Elvira Lazić Mosler ◽  
Dalibor Karlović

Cerebrospinal fluid (CSF) analysis is one of the most important tests in the diagnosis of central nervous system (CNS) diseases. Although CSF analysis is most commonly used in neurological pathological conditions, it also has its place in psychiatry. Studies to date have described several valuable specific cytomorphological phenomena in the cerebrospinal fluid of patients with acute schizophrenia, which indicate inflammatory or immune-mediated etiopathogenesis of the disease. Additional and long-term research is needed to confirm and standardize the importance of cytological analysis of cerebrospinal fluid in the diagnosis and etiopathogenesis of acute schizophrenia.


Tick-borne encephalitis (TBE) is a viral infectious disease of the central nervous system caused by the tick-borne encephalitis virus (TBEV). TBE is usually a biphasic disease and in humans the virus can only be detected during the first (unspecific) phase of the disease. Pathogenesis of TBE is not well understood, but both direct viral effects and immune-mediated tissue damage of the central nervous system may contribute to the natural course of TBE. The effect of TBEV on the innate immune system has mainly been studied in vitro and in mouse models. Characterization of human immune responses to TBEV is primarily conducted in peripheral blood and cerebrospinal fluid, due to the inaccessibility of brain tissue for sample collection. Natural killer (NK) cells and T cells are activated during the second (meningo-encephalitic) phase of TBE. The potential involvement of other cell types has not been examined to date. Immune cells from peripheral blood, in particular neutrophils, T cells, B cells and NK cells, infiltrate into the cerebrospinal fluid of TBE patients.


Sign in / Sign up

Export Citation Format

Share Document