scholarly journals Application of RP-HPLC method for the simultaneous determination of cetirizine in the presence of quinolones

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hina Shamshad ◽  
Agha Zeeshan Mirza

Abstract Background Present work describes a fast, simple, and sensitive procedure for the simultaneous determination of cetirizine in the presence of quinolones using diclofenac sodium as an internal standard. The present work was designed to analyze these compounds in pharmaceutical and clinical labs being economical for use. Results The mobile phase consisted of the simple composition of methanol, acetonitrile, and water in a ratio of 50:20:30 with a pH adjusted to 3.1 at a flow rate of 1 mL min−1. The UV detection was performed at 225 nm. The linearity was assessed over the range of 2.5–50 μg mL−1 for all drugs. The parameters such as accuracy, precision, linearity (>0.999), and sensitivity were satisfactory. Conclusion The method was equally applicable for formulation and human serum with recovery values between 95 and 105%. The results of the method were validated statistically according to ICH guidelines.

Author(s):  
Hina Shamshad ◽  
Ali Sayqal ◽  
Jahan Zeb ◽  
Agha Zeeshan Mirza

Abstract A simple, accurate and precise RP-HPLC method was developed for the simultaneous determination of chloroquine, pyrimethamine and cetirizine hydrochloride concentrations in bulk drug and human serum. The assay was performed using a mobile phase of methanol: water (70:30) at pH of 2.8 ± 0.05 on the Purospher C-18 column with UV detection at 230 nm and rosuvastatin used as an internal standard. The retention times observed for chloroquine, pyrimethamine and cetirizine hydrochloride were 3.5, 2.5 and 5.5 minutes, respectively. The method was found to be specific for the assayed drugs showing a linear response in the concentration range of 1–100 μg mL−1 with coefficients of determination values of (r = 0.999). The method was developed and validated according to ICH guidelines. The method was used to monitor the serum samples and was found to be sensitive for therapeutic purposes, showing the potential to be a useful tool for routine analysis in laboratories.


2020 ◽  
Vol 66 (1) ◽  
pp. 85-90
Author(s):  
Zhaklina Poposka Svirkova ◽  
Zorica Arsova-Sarafinovska ◽  
Aleksandra Grozdanova

Due to the low absorptivity of bile acids, the aim of this study was to develop and validate a simple and sensitive HPLC/UV method for quantification of ursodeoxycholic acid (UDCA) in pharmaceutical formulations. Effective separation was achieved on C18 end–capped column, with gradient elution of a mobile phase composed of 0.001 M phosphate buffer (pH 2.8±0.5) – acetonitrile mix, at flow rate 1.5 mL min-1, UV detection at 200 nm and injection volumes were 50 µL. The proposed HPLC method was fully validated according to the ICH guidelines and it was found to be simple, accurate, precise and robust. Key words: ursodeoxycholic acid, HPLC/UV, pharmaceutical formulations, validation


Author(s):  
V. N. V. KISHORE ◽  
G. V. RAMANA

Objective: Stability representing the RP-HPLC method was established for synchronized quantification of Tigecycline and its impurities. This method was confirmed for its applicability to both tablet dosage and bulk drug forms. Methods: Intended for an isocratic elution, a mobile phase containing methanol: 10 mmol Triethylamine Buffer mixture (75:25 v/v, pH 6.1) was used at 1 ml/min flow rate and Agilent ZORBAX Eclipse XDB C18 (250 mm × 4.6 mm, 5 μm) column. Results: At 231 nm as wavelength, high-pitched peaks of Tigecycline (Tig) and its impurities (1and2) were detected at 6.55, 8.73 and 4.87 min correspondingly. The linearity of tigecycline and its impurities (impurity-1 and 2 and) were estimated with ranging from 75–450 µg/ml for Tigecycline and 1–6 µg/ml for both impurity 1 and 2. The corresponding recognition limits (LOD and LOQ) of the tigecycline and its impurities were originated to be (1.37,0.047 and 0.071 µg/ml) and (4.15, 0.143 and 0.126 µg/ml). Conclusion: The technique was effectively stretched for stability signifying studies under different stress conditions. Justification of the method was done as per the current ICH guidelines.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
M. V. Basaveswara Rao ◽  
A. V. D Nagendrakumar ◽  
Sushanta Maiti ◽  
N. Chandrasekhar

A simple, selective, linear, precise, and accurate RP-HPLC method was developed and validated for rapid assay of Pizotifen in pharmaceutical dosage form. Isocratic elution at a flow rate of 1.0 mL/min was employed on Chromosil C18 (250 mm × 4.6 mm, 5 μm) column at ambient temperature. The mobile phase consists of methanol : acetonitrile in the ratio of 10 : 90 v/v. The UV detection wavelength was 230 nm, and 20 μL sample was injected. The retention time for Pizotifen was 2.019 min. The percent RSD for accuracy of the method was found to be 0.2603%. The method was validated as per the ICH guidelines. The method can be successfully applied for routine analysis of Pizotifen in the rapid and reliable determination of Pizotifen in pharmaceutical dosage form.


Author(s):  
Krishna Kishore Adireddy ◽  
Srinivasa Rao Baratam ◽  
Nagarjuna Hari Pratap S.

A simple, rapid, accurate and precise RP-HPLC method was developed and validated for the determination of Etelcalcetide in bulk and parentral dosage form. Quantification of the drug was achieved on Shimadzu HPLC comprising of LC- 20 AD binary gradient pump, a variable wavelength programmable SPD-20A detector and SCL system controller. C18G column (250 mm x 4.6 mm, 5 μ) as stationary phase with mobile phase consisting of acetonitrile: methanol :water in the ratio of 25: 45 :30 v/v. The method showed a good linear response in the concentration range of 3.75-22.5 μg/ml with correlation coefficient of 0.9999. The flow rate was maintained at 1.0 ml/min and effluents were monitored at 238 nm. The retention time of etelcalcetide was 6.201 min. The method was statistically validated for accuracy, precision, linearity, ruggedness, robustness, solution stability, selectivity and sensitivity. The results obtained in the study were within the limits of ICH guidelines and hence this method can be used for the determination of etelcalcetide in bulk and parentral dosage form.


2011 ◽  
Vol 94 (1) ◽  
pp. 106-109 ◽  
Author(s):  
Suryakant D Bhosale ◽  
Sadhana J Rajput

Abstract An RP-HPLC method has been developed for the simultaneous determination of butenafine hydrochloride and betamethasone dipropionate on an Inertsil C18 column (250×4.6 mm id) using a mobile phase gradient consisting of methanol and water at a flow rate of 1 mL/min. Detection was carried out at 254 nm. Retention times of betamethasone dipropionate and butenafine hydrochloride were 4.82 (±0.80) and 16.18 (±0.17) min, respectively. The method was validated with respect to specificity, linearity, accuracy, precision, ruggedness, and robustness. This method is simple, precise, and sensitive, and applicable for the simultaneous quantification of butenafine hydrochloride and betamethasone dipropionate in a cream formulation.


Separations ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Mohd Afzal ◽  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohammed Tahir Ansari

A highly specific, accurate, and simple RP-HPLC technique was developed for the real-time quantification of domperidone (DOMP) and lansoprazole (LANS) in commercial formulations. Chromatographic studies were performed using a Luna C8(2), 5 μm, 100Å, column (250 × 4.6 mm, Phenomenex) with a mobile phase composed of acetonitrile/2 mM ammonium acetate (51:49 v/v), pH 6.7. The flow rate was 1 mL·min−1 with UV detection at 289 nm. Linearity was observed within the range of 4–36 µg·mL−1 for domperidone and 2–18 µg·mL−1 for lansoprazole. Method optimization was achieved using Box-Behnken design software, in which three key variables were examined, namely, the flow rate (A), the composition of the mobile phase (B), and the pH (C). The retention time (Y1 and Y3) and the peak area (Y2 and Y4) were taken as the response parameters. We observed that slight alterations in the mobile phase and the flow rate influenced the outcome, whereas the pH exerted no effect. Method validation featured various ICH parameters including linearity, limit of detection (LOD), accuracy, precision, ruggedness, robustness, stability, and system suitability. This method is potentially useful for the analysis of commercial formulations and laboratory preparations.


2006 ◽  
Vol 3 (1) ◽  
pp. 60-64 ◽  
Author(s):  
P. Venkata Reddy ◽  
B. Sudha Rani ◽  
G. Srinu Babu ◽  
J. V. L. N. Seshagiri Rao

A reverse phase HPLC method is developed for the determination of Raloxifene in pharmaceutical dosage forms. Chromatography was carried out on an inertsil C18 column using a mixture of acetonitrile and phosphate buffer (30:70 v/v) as the mobile phase at a flow rate of 1 mL/min. Detection was carried out at 290 nm .The retention time of the drug was 10.609 min. The method produced linear responses in the concentration range of 0.5-200 µg/mL of Raloxifene. The method was found to be applicable for determination of the drug in tablets.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (07) ◽  
pp. 59-68
Author(s):  
H Mahajan ◽  
S Savale ◽  
P Nerkar ◽  

The present study was aimed at developing a Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) method for simultaneous determination of curcumin (CRM) and gefitinib (GFT) in bulk, plasma and brain homogenate. hydrochlorothiazide was used as an internal standard (IS). A new simple, rapid, selective, precise and accurate RP-HPLC method has been developed. The separation was achieved by using C-18 column (Qualisil BDS C18, 250 mm x 4.6 mm I.D.) coupled with a guard column of silica, mobile phase consisted of acetonitrile: water with 0.1% formic acid (30:70 v/v). The flow rate was 0.2 ml/min and the drug was detected using PDA detector at the wavelength of 242 nm. The experimental conditions, including the diluting solvent, mobile phase composition, column saturation and flow rate, were optimised to provide high-resolution and reproducible peaks. The method was developed and tested for linearity range of 10-60 μg/mL for bulk analysis and 200-800 ng/mL for plasma and brain homogenate. The developed method was validated as per ICH guidelines, in terms of linearity, application of the proposed method to bulk sample, recovery, precision, repeatability, ruggedness, sensitivity (LOD and LOQ) and robustness and stability study (short and long-term stabilities, freeze/thaw stability, post-preparative). The low value of % RSD showed that the method was precise within the acceptance limit of 2%. The developed method was successfully applied for the analysis of the drug in bulk as well as various marketed formulation and drug in plasma and brain distribution studies.


Sign in / Sign up

Export Citation Format

Share Document