scholarly journals Skin cancer therapeutics: nano-drug delivery vectors—present and beyond

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Manisha Lalan ◽  
Pranav Shah ◽  
Kalyani Barve ◽  
Khushali Parekh ◽  
Tejal Mehta ◽  
...  

Abstract Background Skin cancers are among the widely prevalent forms of cancer worldwide. The increasing industrialization and accompanied environmental changes have further worsened the skin cancer statistics. The stern topical barrier although difficult to breach is a little compromised in pathologies like skin cancer. The therapeutic management of skin cancers has moved beyond chemotherapy and surgery. Main body of the abstract The quest for a magic bullet still prevails, but topical drug delivery has emerged as a perfect modality for localized self-application with minimal systemic ingress for the management of skin cancers. Advances in topical drug delivery as evidenced by the exploration of nanocarriers and newer technologies like microneedle-assisted/mediated therapeutics have revolutionized the paradigms of topical treatment. The engineered nanovectors have not only been given the liberty to experiment with a wide-array of drug carriers with very distinguishing characteristics but also endowed them with target specificity. The biologicals like nucleic acid-based approaches or skin penetrating peptide vectors are another promising area of skin cancer therapeutics which has demonstrated potential in research studies. In this review, a panoramic view is presented on the etiology, therapeutic options, and emerging drug delivery modalities for skin cancer. Short conclusion Nanocarriers have presented innumerable opportunities for interventions in skin cancer therapeutics. Challenge persists for the bench to bedside translation of these highly potential upcoming therapeutic strategies. Graphic abstract

2020 ◽  
Vol 14 (2) ◽  
pp. 108-125
Author(s):  
Apoorva Singh ◽  
Nimisha

: Skin cancer, among the various kinds of cancers, is a type that emerges from skin due to the growth of abnormal cells. These cells are capable of spreading and invading the other parts of the body. The occurrence of non-melanoma and melanoma, which are the major types of skin cancers, has increased over the past decades. Exposure to ultraviolet radiations (UV) is the main associative cause of skin cancer. UV exposure can inactivate tumor suppressor genes while activating various oncogenes. The conventional techniques like surgical removal, chemotherapy and radiation therapy lack the potential for targeting cancer cells and harm the normal cells. However, the novel therapeutics show promising improvements in the effectiveness of treatment, survival rates and better quality of life for patients. Different methodologies are involved in the skin cancer therapeutics for delivering the active ingredients to the target sites. Nano carriers are very efficient as they have the ability to improve the stability of drugs and further enhance their penetration into the tumor cells. The recent developments and research in nanotechnology have entitled several targeting and therapeutic agents to be incorporated into nanoparticles for an enhancive treatment of skin cancer. To protect the research works in the field of nanolipoidal systems various patents have been introduced. Some of the patents acknowledge responsive liposomes for specific targeting, nanocarriers for the delivery or co-delivery of chemotherapeutics, nucleic acids as well as photosensitizers. Further recent patents on the novel delivery systems have also been included here.


2021 ◽  
Vol 10 (2) ◽  
pp. 2704-2711
Author(s):  
Manisha Saini ◽  

Cancer has a significant effect on society worldwide. Statistics on cancer explain what happens in a large set of people and give a real picture of the burden on society. A number of cancer treatments are accessible nowadays and enormous numbers are in the pipeline, but society still faces several lacks in full therapy cure. The objective is to determine, parallel to the kinds and uses of supramolecular drug carriers, and the incidence and incidences of cancer with various medical systems concentrated primarily on targeted structures. Rational drug delivery designs have shown important interest in enhancing therapeutics in latest years with regard to leveraging supramolecular chemistry that is ‘‘chemistry beyond molecules.'' Particular tunable and dynamic non-covalent interaction of engineering can be used for drug delivery. Advantages of this include molecular composition control, improved drug integration and targeting pathways, and new delivery devices which respond to a various physiological indicators. One of the largely recognizable motivations for supramolecular drug delivery is macrocyclic hosts-guest complexes. The scope of this review is to give a clear picture that how supramolecular drugs carrier plays an effective role in cancer treatment.


2021 ◽  
Vol 22 (22) ◽  
pp. 12368
Author(s):  
Alexander Vaneev ◽  
Victoria Tikhomirova ◽  
Natalia Chesnokova ◽  
Ekaterina Popova ◽  
Olga Beznos ◽  
...  

Topical drug delivery is one of the most challenging aspects of eye therapy. Eye drops are the most prevalent drug form, especially for widely distributed anterior segment eye diseases (cataracts, glaucoma, dry eye syndrome, inflammatory diseases, etc.), because they are convenient and easy to apply by patients. However, conventional drug formulations are usually characterized by short retention time in the tear film, insufficient contact with epithelium, fast elimination, and difficulties in overcoming ocular tissue barriers. Not more than 5% of the total drug dose administered in eye drops reaches the interior ocular tissues. To overcome the ocular drug delivery barriers and improve drug bioavailability, various conventional and novel drug delivery systems have been developed. Among these, nanosize carriers are the most attractive. The review is focused on the different drug carriers, such as synthetic and natural polymers, as well as inorganic carriers, with special attention to nanoparticles and nanomicelles. Studies in vitro and in vivo have demonstrated that new formulations could help to improve the bioavailability of the drugs, provide sustained drug release, enhance and prolong their therapeutic action. Promising results were obtained with drug-loaded nanoparticles included in in situ gel.


Author(s):  
Ayodipupo S. Oguntade ◽  
Faez Al-Amodi ◽  
Abdullah Alrumayh ◽  
Muath Alobaida ◽  
Mwango Bwalya

Abstract Background Angiogenesis is the formation of new vascular networks from preexisting ones through the migration and proliferation of differentiated endothelial cells. Available evidence suggests that while antiangiogenic therapy could inhibit tumour growth, the response to these agents is not sustained. The aim of this paper was to review the evidence for anti-angiogenic therapy in cancer therapeutics and the mechanisms and management of tumour resistance to antiangiogenic agents. We also explored the latest advances and challenges in this field. Main body of the abstract MEDLINE and EMBASE databases were searched for publications on antiangiogenic therapy in cancer therapeutics from 1990 to 2020. Vascular endothelial growth factor (VEGF) is the master effector of the angiogenic response in cancers. Anti-angiogenic agents targeting the VEGF and HIF-α pathways include monoclonal antibodies to VEGF (e.g. bevacizumab), small-molecule tyrosine kinase inhibitors (TKIs) e.g. sorafenib, decoy receptor or VEGF trap e.g. aflibercept and VEGFR2 inhibitors (e.g. ramucirumab). These classes of drugs are vascular targeting which in many ways are advantageous over tumour cell targeting drugs. Their use leads to a reduction in the tumour blood supply and growth of the tumour blood vessels. Tumour resistance and cardiovascular toxicity are important challenges which limit the efficacy and long-term use of anti-angiogenic agents in cancer therapeutics. Tumour resistance can be overcome by dual anti-angiogenic therapy or combination with conventional chemotherapy and immunotherapy. Emerging nanoparticle-based therapy which can silence the expression of HIF-α gene expression by antisense oligonucleotides or miRNAs has been developed. Effective delivery platforms are required for such therapy. Short conclusion Clinical surveillance is important for the early detection of tumour resistance and treatment failure using reliable biomarkers. It is hoped that the recent interest in mesenchymal cell-based and exosome-based nanoparticle delivery platforms will improve the cellular delivery of newer anti-angiogenics in cancer therapeutics.


RSC Advances ◽  
2014 ◽  
Vol 4 (62) ◽  
pp. 32673-32689 ◽  
Author(s):  
Chetna Dhand ◽  
Molamma P. Prabhakaran ◽  
Roger W. Beuerman ◽  
R. Lakshminarayanan ◽  
Neeraj Dwivedi ◽  
...  

The design of a drug delivery system and the fabrication of efficient, successful, and targeted drug carriers are two separate issues that require slightly different design parameters.


2019 ◽  
Vol 16 (8) ◽  
pp. 882-891
Author(s):  
Yongjia Liu ◽  
Leilei Shi ◽  
Bangshang Zhu ◽  
Yue Su ◽  
Hui Li ◽  
...  

Background: The drug-drug self-assembly was considered as a simple and efficient approach to prepare high drug loading nano-drug carriers and present new opportunities for cancer therapeutics. The strategy of PTX amphiphiles preparation would be a possible way to solve the poor water solubility of PTX. Methods: The PTX-YSL conjugate were synthesized and characterized. The PTX-YSL nanocarriers was prepared by a simple self-assembly method. In vitro cell studies and pharmacokinetic studies were evaluated for their in vitro anti-tumor activities and blood retention time. Results: The structures of PTX-YSL conjugate were confirmed by LC-MS, 1H NMR and FTIR. The size and morphology of the PTX-YSL self-assembled nanocarriers were observed with TEM and DLS. PTX-YSL nanocarriers could facilitate cellular uptake and had low cytotoxicity. PTX-YSL nanocarriers have longer blood retention for enhancing accumulation in the tumor tissues via EPR effect. Conclusion: This drug delivery system formed by PTX-YSL conjugates constitutes a promising and effective drug carrier in cancer therapy.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 218
Author(s):  
Manisha Pandey ◽  
Hira Choudhury ◽  
Bapi Gorain ◽  
Shao Qin Tiong ◽  
Grace Yee Seen Wong ◽  
...  

Skin cancer, one of the most prevalent cancers worldwide, has demonstrated an alarming increase in prevalence and mortality. Hence, it is a public health issue and a high burden of disease, contributing to the economic burden in its treatment. There are multiple treatment options available for skin cancer, ranging from chemotherapy to surgery. However, these conventional treatment modalities possess several limitations, urging the need for the development of an effective and safe treatment for skin cancer that could provide targeted drug delivery and site-specific tumor penetration and minimize unwanted systemic toxicity. Therefore, it is vital to understand the critical biological barriers involved in skin cancer therapeutics for the optimal development of the formulations. Various nanocarriers for targeted delivery of chemotherapeutic drugs have been developed and extensively studied to overcome the limitations faced by topical conventional dosage forms. A site-specific vesicular drug delivery system appears to be an attractive strategy in topical drug delivery for the treatment of skin malignancies. In this review, vesicular drug delivery systems, including liposomes, niosomes, ethosomes, and transfersomes in developing novel drug delivery for skin cancer therapeutics, are discussed. Firstly, the prevalence statistics, current treatments, and limitations of convention dosage form for skin cancer treatment are discussed. Then, the common type of nanocarriers involved in the research for skin cancer treatment are summarized. Lastly, the utilization of vesicular drug delivery systems in delivering chemotherapeutics is reviewed and discussed, along with their beneficial aspects over other nanocarriers, safety concerns, and clinical aspects against skin cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document