scholarly journals DoE approach for development of localized controlled release microspheres of Vancomycin for treatment of septic arthritis

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
P. Sunanda Laxmi ◽  
M. Vidyavathi ◽  
Suresh Kumar Rayadurgam Venkata

Abstract Background Septic arthritis is a worse condition of RA that is associated with significant morbidity and mortality. Septic arthritis develops due to direct introduction or invasion of pathogens. The objective of the present study was to formulate Vancomycin hydrochloride-loaded microspheres (VMS) based on Box–Behnken design (BBD) and evaluate its efficacy against septic arthritis. The intraarticular administration of optimized Vancomycin hydrochloride-loaded microspheres (OVMS) can reduce dose size, dosing frequency and systemic exposure with local targeted delivery. Results OVMS was further characterized for its drug–polymer compatibility using differential scanning calorimetry and Fourier transmission infrared spectroscopy. In vitro antibacterial activity was determined using the cup–plate method and in vivo anti-arthritic efficacy was evaluated by gross examination of septic arthritis. DSC and FTIR studies exhibited no interaction or incompatibilities between the drug and polymer. SEM images revealed that OVMS were spherical. It followed the first-order release rate according to Fick's law. The micromeritic properties indicated good flow property of OVMS. The zone of inhibition by OVMS was 1.5 cm against S. aureus. In vivo antibacterial study revealed that OVMS was significant in reducing septic arthritis and bacterial load, i.e., 110.1 CFU/ml in comparison with the control group (850 CFU/ml). Conclusions Thus, OVMS may be used as an effective formulation for the treatment of septic arthritis as compared to marketed IV vancomycin injection after clinical studies.

INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (09) ◽  
pp. 38-47
Author(s):  
H. S. Mahajan ◽  
◽  
M. I. Patel

The aim of the present study was to formulate saquinavir mesylate loaded nanostructured lipid carriers (SQVM-NLC) and evaluate its brain distribution after nasal administration. NLCs reveal some advantages for drug therapy over conventional carriers, including increased solubility, the ability to enhance storage stability, improved permeability and bioavailability, reduced adverse effect, prolonged half-life, and tissue-targeted delivery. SQVM-NLCs were prepared by hot high pressure homogenization and subsequent stabilization by lyophilization. QVM- NLC developed showed a particle with the size of 124.4 nm, polydispersity index of 0.267, entrapment efficiency of 73% and the zeta potential of -24.9 mV. The results from Scanning Electron Microscopy (SEM), powder X-ray diffraction (XRD)and differential scanning calorimetry (DSC) demonstrated that SQVM was present in NLC in an encapsulated molecule form. Mucosal toxicity study on sheep nasal mucosa showed no significant adverse effect of SQVMloaded NLC. SQVM-NLC showed slower release compared with saquinavir mesylate suspension in vitro. In vivo brain distribution studies demonstrated desired drug concentration in brain after intra nasal administration of SQVM-NLC than PDS. The results of the study also suggest that SQVM-NLC could be a promising drug delivery system for antiretroviral therapy.


Nanomedicine ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. 891-911
Author(s):  
Ragwa M Farid ◽  
Passent M E Gaafar ◽  
Heba A Hazzah ◽  
Maged W Helmy ◽  
Ossama Y Abdallah

Aim: L-carnosine-coated magnetic nanoparticles (CCMNPs) were developed to enhance chemotherapeutic activity of carnosine-dipeptide. Materials & methods: Surface grafting of MNPs with carnosine was contended by differential scanning calorimetry, infrared spectroscopy and x-ray diffraction. Physicochemical characterization and in vitro cytotoxicity on MCF-7 cell line was carried out. In vivo chemotherapeutic activity and toxicity was assessed by an Ehrlich Ascites tumor model. Results: CCMNPs possessed monodispersed size (120 nm), ζ (-27.3 mV), magnetization (51.52 emu/g) and entrapment efficiency (88.3%) with sustained release rate. CCMNPs showed 2.3-folds lower IC50 values compared with carnosine solution after 48 h. Targeted CCMNPs were specifically accumulated in tumor showing significant reduction in tumor size with no systemic toxicity. Significant reduction in VEGF and cyclin D1 levels were observed. Conclusion: The developed system endowed with responsiveness to an external stimulus can represent a promising magnetically targeted delivery system for carnosine site specific delivery.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Laure brigitte Kouitcheu Mabeku ◽  
Bertrand Eyoum Bille ◽  
Eveline Nguepi

This study was performed to evaluate the antimicrobial activities of extracts ofBidens pilosa, Galinsoga ciliata,andEryngium foetidumagainst 6 clinical strains ofHelicobacter pylori in vitroandin vivo. Broth microdilution method was usedin vitro.In vivo, Swiss mice were inoculated withH.pyloriand divided into 5 groups; the control group received the vehicle and the four others received 125, 250, and 500 mg/kg of methanol extract ofEryngium foetidumand ciprofloxacin (500 mg/kg) for 7 days, respectively.Helicobacter pyloricolonization and number of colonies in gastric biopsies culture were assessed on days 1 and 7 after treatment. The lowest MIC value (64 μg/mL) and the best spectrum of bactericidal effect (MBC/MIC = 1) were obtained with the methanol extract ofEryngium foetidum. The number ofH.pyloriinfected animals was 17% (plant-extract) and 0% (ciprofloxacin) compared to 100% for the infected untreated group. Plant-extract (381.9±239.5 CFU) and ciprofloxacin (248±153.2 CFU) significantly reduced bacterial load in gastric mucosa compared to untreated, inoculated mice (14350±690 CFU).Conclusion. The present data provided evidence that methanol extract ofEryngium foetidumcould be a rich source of metabolites with antimicrobial activity to fightHelicobacter pyloriinfections.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Vaideesh Parasaram ◽  
Xiaoying Wang ◽  
Pantrika Krisanarungson ◽  
Narendra Vyavahare

Abstract Background Elastin degradation has been established as one of the driving factors of emphysema. Elastin-derived peptides (EDPs) are shown to act as a chemoattractant for monocytes. Effectively shielding elastin from elastolytic damage and regenerating lost elastin are two important steps in improving the mechanical function of damaged lungs. Pentagalloyl glucose (PGG) has been shown to preserve elastin in vascular tissues from elastolytic damage in vivo and aid in elastin deposition in vitro. Methods We created emphysema by elastase inhalation challenge in mice. Albumin nanoparticles loaded with PGG, conjugated with elastin antibody, were delivered to target degraded elastin in lungs. We investigated matrix metalloproteinase-12 activity and lung damage by measuring dynamic compliance and tidal volume changes. Results Ex-vivo experiments demonstrated elastin preservation in PGG treated samples compared to controls. Inhaled nanoparticles conjugated with elastin antibody retained for extended periods in lungs. Further, mice treated with PGG nanoparticles showed a significant suppression of MMP-12 activity measured in the lungs. We observed suppression of emphysema in terms of dynamic lung compliance and tidal volume change compared to the control group. The histological examination further confirmed elastin preservation in the lungs. Conclusion These results demonstrate successful targeted delivery of nanoparticles loaded with PGG to inhibit MMP-12 activity and preserve elastin in the lungs. Such targeted PGG therapy has potential therapeutic use in the management of emphysema.


2018 ◽  
Vol 8 (4) ◽  
pp. 643-655 ◽  
Author(s):  
Babak Roshangar Zineh ◽  
Mohammad Reza Shabgard ◽  
Leila Roshangar

Purpose: Cartilage shows neither repairs nor regenerative properties after trauma or gradual wear and causes severe pain due to bones rubbing. Bioprinting of tissue-engineered artificial cartilage is one of the most fast-growing sciences in this area that can help millions of people against this disease. Methods: Bioprinting of proper bioscaffolds for cartilage repair was the main goal of this study. The bioprinting process was achieved by a novel composition consisting of alginate (AL), Halloysite nanotube (HNT), and methylcellulose (MC) prepared in bio-ink. Also, the effect of Russian olive (RO) in chondrocytes growth on bioscaffolds was also investigated in this work. Compressive, hardness and viscosity tests, Energy-Dispersive X-Ray Spectroscopy (EDX), Fourier-Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), water-soluble Tetrazolium (WST) assay, and also transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were carried out. Results: The results show that in constant concentrations of AL, MC, and RO (20 mg/ml AL, 20 mg/ml MC, and 10 mg/ml RO) when concentration of HNT increased from 10 mg/ml (T-7) to 20 mg/ml (T-8) compressive stiffness increased from 241±45 kPa to 500.66±19.50 kPa. Also, 20 mg/ml of AL in composition saved proper water content for chondrocyte growth and produced good viscosity properties for a higher printing resolution. Conclusion: RO increased chondrocytes living cell efficiency by 11% on bioprinted scaffolds in comparison with the control group without RO. Results obtained through in-vivo studies were similar to those of in-vitro studies. According to the results, T-7 bio-ink has good potential in bioprinting of scaffolds in cartilage repairs.


1990 ◽  
Vol 29 (03) ◽  
pp. 120-124
Author(s):  
R. P. Baum ◽  
E. Rohrbach ◽  
G. Hör ◽  
B. Kornhuber ◽  
E. Busse

The effect of triiodothyronine (T3) on the differentiation of cultured neuroblastoma (NB) cells was studied after 9 days of treatment with a dose of 10-4 M/106 cells per day. Using phase contrast microscopy, 30-50% of NB cells showed formation of neurites as a morphological sign of cellular differentiation. The initial rise of the mitosis rate was followed by a plateau. Changes in cyclic nucleotide content, in the triphosphates and in the activity of the enzyme ornithine decarboxylase (ODC) were assessed in 2 human and 2 murine cell lines to serve as biochemical parameters of the cell differentiation induced by T3. Whereas the cAMP level increased significantly (3 to 7 fold compared with its initial value), the cGMP value dropped to 30 to 50% of that of the control group. ATP and GTP increased about 200%, the ODC showed a decrease of about 50%. The present studies show a biphasic effect of T3 on neuroblastoma cells: the initial rise of mitotic activity is followed by increased cell differentiation starting from day 4 of the treatment.


2020 ◽  
Author(s):  
K. Zerrouki ◽  
N. Djebli ◽  
L. Gadouche ◽  
I. Erdogan Orhan ◽  
F. SezerSenol Deniz ◽  
...  

Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


2018 ◽  
Vol 24 (15) ◽  
pp. 1639-1651 ◽  
Author(s):  
Xian-ling Qian ◽  
Jun Li ◽  
Ran Wei ◽  
Hui Lin ◽  
Li-xia Xiong

Background: Anticancer chemotherapeutics have a lot of problems via conventional Drug Delivery Systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: “passive”, “active”, and “smart” targeting. Objective: To summarize the mechanisms of various internal and external “smart” stimulating factors on the basis of findings from in vivo and in vitro studies. Method: A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Results: Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), “smart” DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. Conclusion: In this review article, we summarize and classify the internal and external triggering mechanism of “smart” nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding.


2020 ◽  
Vol 17 (3) ◽  
pp. 246-256
Author(s):  
Kriti Soni ◽  
Ali Mujtaba ◽  
Md. Habban Akhter ◽  
Kanchan Kohli

Aim: The intention of this investigation was to develop Pemetrexed Diacid (PTX)-loaded gelatine-cloisite 30B (MMT) nanocomposite for the potential oral delivery of PTX and the in vitro, and ex vivo assessment. Background: Gelatin/Cloisite 30 B (MMT) nanocomposites were prepared by blending gelatin with MMT in aqueous solution. Methods: PTX was incorporated into the nanocomposite preparation. The nanocomposites were investigated by Fourier Transmission Infra Red Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) X-Ray Diffraction (XRD) and Confocal Laser Microscopy (CLSM). FT-IR of nanocomposite showed the disappearance of all major peaks which corroborated the formation of nanocomposites. The nanocomposites were found to have a particle size of 121.9 ± 1.85 nm and zeta potential -12.1 ± 0.63 mV. DSC thermogram of drug loaded nanocomposites indicated peak at 117.165 oC and 205.816 oC, which clearly revealed that the drug has been incorporated into the nanocomposite because of cross-linking of cloisite 30 B and gelatin in the presence of glutaraldehyde. Results: SEM images of gelatin show a network like structure which disappears in the nanocomposite. The kinetics of the drug release was studied in order to ascertain the type of release mechanism. The drug release from nanocomposites was in a controlled manner, followed by first-order kinetics and the drug release mechanism was found to be of Fickian type. Conclusion: Ex vivo gut permeation studies revealed 4 times enhancement in the permeation of drug present in the nanocomposite as compared to plain drug solution and were further affirmed by CLSM. Thus, gelatin/(MMT) nanocomposite could be promising for the oral delivery of PTX in cancer therapy and future prospects for the industrial pharmacy.


Sign in / Sign up

Export Citation Format

Share Document