scholarly journals Regulatory B cell frequency correlates with markers of HIV disease progression and attenuates anti-HIV CD8+T cell function in vitro

2013 ◽  
Vol 93 (5) ◽  
pp. 811-818 ◽  
Author(s):  
Basile Siewe ◽  
Jack T. Stapleton ◽  
Jeffrey Martinson ◽  
Ali Keshavarzian ◽  
Nazia Kazmi ◽  
...  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Ying Pan ◽  
Zi-Ning Zhang ◽  
Lin-Bo Yin ◽  
Ya-Jing Fu ◽  
Yong-Jun Jiang ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Daniel Michaud ◽  
Bhalchandra Mirlekar ◽  
Colleen Steward ◽  
Gail Bishop ◽  
Yuliya Pylayeva-Gupta

B cells can act as potent suppressors of anti-tumor T cell immunity, presenting a mechanism of resistance to immunotherapy. In pancreatic ductal adenocarcinoma, B cells can display a T cell-suppressive or regulatory phenotype centered on the expression of the cytokine Interleukin 35 (IL-35). While B cell-mediated immunosuppression presents a barrier to anti-tumorigenic T cell function, it is not clear how regulatory B cell function could be targeted, and the signals that promote this suppressive phenotype in B cells are not well understood. Here we use a novel IL-35 reporter model to understand which signaling pathways are important for immunosuppressive properties in B cells. In vitro analysis of IL-35 reporter B cells revealed a synergy between the BCR and TLR4 signaling pathways is sufficient to induce IL-35 expression. However, in vivo, B cell receptor activation, as opposed to MyD88 signaling in B cells, is central to B cell-mediated suppression and promotion of pancreatic cancer growth. Further analysis identified protein kinase D2 (PKD2) as being a key downstream regulator of IL-35 expression in B cells. Regulatory B cells with an inactivating mutation in PKD2 failed to produce IL-35 or fully suppress effector T cell function in vitro. Furthermore, inhibition of PKD in B cells decreased tumor growth and promoted effector T cell function upon adoptive transfer into B cell-deficient mice. Collectively, these data provide insight into how regulatory B cell function is promoted in pancreatic cancer and identify potential therapeutic targets to restrain this function.


Blood ◽  
1981 ◽  
Vol 58 (3) ◽  
pp. 431-439 ◽  
Author(s):  
LG Lum ◽  
MC Seigneuret ◽  
RF Storb ◽  
RP Witherspoon ◽  
ED Thomas

Abstract Twenty-four patients with aplastic anemia or acute leukemia were treated by marrow grafts from HLA-identical donors after conditioning with high doses of cyclophosphamide and/or today body irradiation. They were studied between 4 and 63 mo (median 14.2) after transplantation. Seventeen patients had chronic graft-versus-host disease (C-GVHD) and 7 were healthy. They were studied for defects in their T- and B-cell function using and indirect hemolytic plaque assay for Ig production after 6 days of culture in the presence of pokeweek mitogen. T or B cells from the patients with or without C-GVHD were cocultured with T or B cells from their HLA-identical marrow donors or unrelated normal controls. Intrinsic B-cell defects, lack of helper T-cell activity, and suppressor T-cell activity were more frequently found in patients with C-GVHD than in healthy patients. Fifteen of the 17 patients with C-GVHD showed on or more defects in their T-and B-cell function compared to only 3 of the 7 patients without C-GVHD. None of the healthy controls, including the marrow donors, showed defects in their T- and B-cell functions. These in vitro findings may be helpful in assessing the process of immune reconstitution and the immunologic aberration found after human marrow transplantation.


Blood ◽  
1981 ◽  
Vol 58 (3) ◽  
pp. 431-439 ◽  
Author(s):  
LG Lum ◽  
MC Seigneuret ◽  
RF Storb ◽  
RP Witherspoon ◽  
ED Thomas

Twenty-four patients with aplastic anemia or acute leukemia were treated by marrow grafts from HLA-identical donors after conditioning with high doses of cyclophosphamide and/or today body irradiation. They were studied between 4 and 63 mo (median 14.2) after transplantation. Seventeen patients had chronic graft-versus-host disease (C-GVHD) and 7 were healthy. They were studied for defects in their T- and B-cell function using and indirect hemolytic plaque assay for Ig production after 6 days of culture in the presence of pokeweek mitogen. T or B cells from the patients with or without C-GVHD were cocultured with T or B cells from their HLA-identical marrow donors or unrelated normal controls. Intrinsic B-cell defects, lack of helper T-cell activity, and suppressor T-cell activity were more frequently found in patients with C-GVHD than in healthy patients. Fifteen of the 17 patients with C-GVHD showed on or more defects in their T-and B-cell function compared to only 3 of the 7 patients without C-GVHD. None of the healthy controls, including the marrow donors, showed defects in their T- and B-cell functions. These in vitro findings may be helpful in assessing the process of immune reconstitution and the immunologic aberration found after human marrow transplantation.


2020 ◽  
Vol 222 (9) ◽  
pp. 1540-1549
Author(s):  
Bruktawit A Goshu ◽  
Hui Chen ◽  
Maha Moussa ◽  
Jie Cheng ◽  
Marta Catalfamo

Abstract In chronic HIV infection, virus-specific cytotoxic CD8 T cells showed expression of checkpoint receptors and impaired function. Therefore, restoration of CD8 T-cell function is critical in cure strategies. Here, we show that in vitro blockade of programmed cell death ligand 1 (PD-L1) by an anti-PD-L1 antibody (avelumab) in combination with recombinant human interleukin-15 (rhIL-15) synergistically enhanced cytokine secretion by proliferating HIVGag-specific CD8 T cells. In addition, these CD8 T cells have a CXCR3+PD1−/low phenotype, suggesting a potential to traffic into peripheral tissues. In vitro, proliferating CD8 T cells express PD-L1 suggesting that anti-PD-L1 treatment also targets virus-specific CD8 T cells. Together, these data indicate that rhIL-15/avelumab combination therapy could be a useful strategy to enhance CD8 T-cell function in cure strategies.


2006 ◽  
Vol 80 (13) ◽  
pp. 6339-6344 ◽  
Author(s):  
Geeta Chaudhri ◽  
Vijay Panchanathan ◽  
Horst Bluethmann ◽  
Gunasegaran Karupiah

ABSTRACT To understand the correlates of protective immunity against primary variola virus infection in humans, we have used the well-characterized mousepox model. This is an excellent surrogate small-animal model for smallpox in which the disease is caused by infection with the closely related orthopoxvirus, ectromelia virus. Similarities between the two infections include virus replication and transmission, aspects of pathology, and development of pock lesions. Previous studies using ectromelia virus have established critical roles for cytokines and effector functions of CD8 T cells in the control of acute stages of poxvirus infection. Here, we have used mice deficient in B cells to demonstrate that B-cell function is also obligatory for complete virus clearance and recovery of the host. In the absence of B cells, virus persists and the host succumbs to infection, despite the generation of CD8 T-cell responses. Intriguingly, transfer of naive B cells or ectromelia virus-immune serum to B-cell-deficient mice with established infection allowed these animals to clear virus and fully recover. In contrast, transfer of ectromelia virus-immune CD8 T cells was ineffective. Our data show that mice deficient in CD8 T-cell function die early in infection, whereas those deficient in B cells or antibody production die much later, indicating that B-cell function becomes critical after the effector phase of the CD8 T-cell response to infection subsides. Strikingly, our results show that antibody prevents virus from seeding the skin and forming pock lesions, which are important for virus transmission between hosts.


1985 ◽  
Vol 63 (7) ◽  
pp. 843-854 ◽  
Author(s):  
Pamela E. Prete

This study reports the effects in vitro and in vivo of L-canavanine (LCN), an amino acid found in commonly consumed legumes, on immune function in normal and autoimmune mice. L-Canavanine in high doses effectively blocks all DNA synthesis in vitro within 24 h. At lower doses, LCN affects B-cell function of autoimmune New Zealand Black/New Zealand White (NZB/NZW)F1 mice, inhibiting [3H]thymidine incorporation in response to B-cell mitogens, and pokeweed-induced intracytoplasmic immunoglobulin synthesis. LCN stimulates intracytoplasmic immunoglobulin (IgG > IgM). T-cell functions such as lymphoproliferation in response to concanavalin A or phytohemagglutinin and T-cell cytotoxicity are not affected. Suppression of the lipopolysaccharide response by LCN is removed by the addition of fresh B cells. Addition of the amino acid to mouse diet resulted in a decrease in the life-span of the autoimmune NZB and (NZB × NZW)F1 mice and abolished the protective effect of male sex on their survival. The decrease in survival in LCN-treated autoimmune mice correlated with an increase in spontaneous immnunoglobulin-secreting cells (IgG > IgM) and antinuclear and double-stranded DNA antibodies. The histopathological analyses revealed increased glomerular damage and immunoglobulin deposition in the kidneys of the LCN-treated autoimmune and normal (DBA/2) mice. Ten percent of normal mice developed high titers of autoantibodies after 24 weeks of the diet. These data suggest a dietary amino acid, L-canavanine, affects B-cell function resulting in autoimmune phenomena and providing a new animal model of autoimmunity, a diet-induced systemic lupus erythematosus.


2017 ◽  
pp. JVI.01685-17
Author(s):  
Emily Adland ◽  
Matilda Hill ◽  
Nora Lavandier ◽  
Anna Csala ◽  
Anne Edwards ◽  
...  

The well-characterised association between HLA-B*27:05 and protection against HIV disease progression has been linked to immunodominant HLA-B*27:05-restricted CD8+ T-cell responses towards the conserved Gag 263-272 (‘KK10’) and Pol 901-909 ‘KY9’ epitopes. We here studied the impact of the 3 amino acid differences between HLA-B*27:05 and the closely-related HLA-B*27:02 on the HIV-specific CD8+ T-cell response hierarchy and on immune control of HIV. Genetic epidemiological data indicate that both HLA-B*27:02 and HLA-B*27:05 associate with slower disease progression and lower viral loads. The effect of HLA-B*27:02 appears consistently stronger than that of HLA-B*27:05. In contrast to HLA-B*27:05, the immunodominant HIV-specific HLA-B*27:02-restricted CD8+ T-cell response is to a Nef epitope (residues 142-150, ‘VW9’), with Pol-KY9 subdominant and Gag-KK10 further subdominant. This selection was driven by structural differences in the F-pocket, mediated by a polymorphism between these two HLA alleles at position 81. Analysis of autologous virus sequences showed that in HLA-B*27:02-positive subjects all three of these CD8+ T-cell responses impose selection pressure on the virus, whereas in HLA-B*27:05-positive subjects there is no Nef-VW9-mediated selection pressure. These studies demonstrate that HLA-B*27:02 mediates protection against HIV disease progression that is at least as strong or stronger than that mediated by HLA-B*27:05. In combination with the protective Gag-KK10 and Pol-KY9 CD8+ T-cell responses that dominate HIV-specific CD8+ T-cell activity in HLA-B*27:05-positive subjects, a Nef-VW9-specific response is additionally present and immunodominant in HLA-B*27:02-positive subjects, mediated through a polymorphism at residue 81 in the F-pocket, that contributes to selection pressure against HIV.IMPORTANCECD8+ T-cells play a central role in successful control of HIV infection, and have the potential also to mediate the eradication of viral reservoirs of infection. The principal means by which ‘protective’ HLA class I molecules, such as HLA-B*27:05 and HLA-B*57:01, slow HIV disease progression, is believed to be via the particular HIV-specific CD8+ T cell responses restricted by those alleles. We focus here on HLA-B*27:05, one of the best-characterised ‘protective’ HLA molecules, and the closely-related HLA-B*27:02, which differs by only 3 amino acids, and which has not been well-studied in relation to control of HIV infection. We show that HLA-B*27:02 is also protective against HIV disease progression, but the CD8+ T-cell immunodominance hierarchy of HLA-B*27:02 differs strikingly from that of HLA-B*27:05. These findings indicate that the immunodominant HLA-B*27:02-restricted Nef response adds to protection mediated by the Gag and Pol specificities that dominate anti-HIV CD8+ T-cell activity in HLA-B*27:05-positive subjects.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A894-A894
Author(s):  
Haixing Kehoe ◽  
Alexandre Iannello ◽  
Keith Cheung ◽  
Bret Peterson ◽  
Marie Marotel ◽  
...  

BackgroundIn a metastatic setting, systemically-administered therapies that overcome the immunosuppressive tumor microenvironment to promote T-cell recruitment and T-cell cytolytic function will be required to elicit durable anti-tumor immunity. To accomplish this, the STACT (S. Typhimurium-Attenuated Cancer Therapy) platform was developed. STACT is a live bacterial product that has been highly modified using precision genome editing for the following properties: (1) enhanced tolerability after IV dosing, (2) tumor-specific enrichment, (3) phagocytosis by tumor-resident antigen-presenting cells (APCs) with a lack of epithelial cell infectivity, (4) multiplexed genetic cargo delivery, and (5) attenuation of bacterial pathways that impair CD8+ T-cell function. An extensive screening campaign was performed to identify ideal encoded immunomodulatory payload combinations delivered by STACT for efficacy against T-cell excluded tumors.MethodsChromosomal edits to the STACT platform strain were made using PCR. A panel of immunomodulatory proteins, including cytokines, type I interferon (IFN)-inducing factors, co-stimulatory receptors, checkpoint antibodies and TGFβR-Fc decoys were tested for combinatorial potency using STACT. An engineered STING (eSTING) was designed through an extensive protein engineering campaign to identify optimal variants. Combinations were evaluated in primary human APCs using in vitro functional assays, where STACT IL-15Rα-IL-15 (IL-15) + eSTING (ACTM-838) emerged as a lead candidate. ACTM-838 was then evaluated in multiple murine tumor models for therapeutic efficacy and mechanism, as well as tolerability in rodents and primates after systemic administration.ResultsCombinatorial target profiling led to the discovery of ACTM-838, a STACT encoding IL-15 + eSTING. In vitro, ACTM-838 payloads synergistically produced high levels of type I IFN and T-cell recruitment and activation factors from primary human APCs. In vivo, ACTM-838 demonstrated a high degree of complete tumor responses that were entirely CD8+ T-cell dependent. In an autochthonous breast cancer model that lacks any significant lymphocyte infiltrate, ACTM-838 was able to uniformly enrich in each spontaneous lesion to high levels after IV dosing and resulted in significant CD8+ T-cell infiltration. In primates, ACTM-838 was well-tolerated, rapidly cleared, and elicited minimal cytokine response after IV dosing.ConclusionsACTM-838 is a highly attenuated, precision genome-engineered bacterial immunotherapy that delivers IL-15 + eSTING to phagocytic APCs of the solid tumor microenvironment after systemic administration. In preclinical studies, ACTM-838 promotes CD8+ T-cell mediated tumor clearance in T-cell excluded tumors and elicits durable anti-tumor immunity, and is well tolerated in primates. Based on these data, ACTM-838 was nominated for clinical development and has entered cGMP manufacturing and IND-enabling studies.Ethics ApprovalAll animals were used according to protocols approved by an Institutional Animal Care and Use Committee and maintained in specific pathogen-free conditions in a barrier facility.


Sign in / Sign up

Export Citation Format

Share Document