THREE DIMENSIONAL REFLECTION CONTROL

Geophysics ◽  
1938 ◽  
Vol 3 (4) ◽  
pp. 340-348 ◽  
Author(s):  
S. M. Rock

A pattern is presented in which ΔT’s are obtained from intersecting lines of detectors. Assuming a) plane wave fronts at the detectors, and b) rectilinear wave propagation, formulas are presented for: (1) ψ, the angle of arrival of the reflected wave in the wave‐travel plane: i.e., the plane through the line of exploration and perpendicular to the reflecting plane; (2) θ the angle between the wave‐travel plane and a vertical plane through the line of exploration; (3) α, the dip component in the wave‐travel plane; (4) δ, the total dip; and (5) γ, the angle between direction of total dip and the line of exploration. Application of the pattern to field work is described.

2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Daniel Omondi Onyango ◽  
Robert Kinyua ◽  
Abel Nyakundi Mayaka

The shape of the modal duct of an acoustic wave propagating in a muffling system varies with the internal geometry. This shape can be either as a result of plane wave propagation or three-dimensional wave propagation. These shapes depict the distribution of acoustic pressure that may be used in the design or modification of mufflers to create resonance at cut-off frequencies and hence achieve noise attenuation or special effects on the output of the noise. This research compares the shapes of acoustic duct modes of two sets of four pitch configurations of a helicoid in a simple expansion chamber with and without a central tube. Models are generated using Autodesk Inventor modeling software and imported into ANSYS 18.2, where a fluid volume from the complex computer-aided-design (CAD) geometry is extracted for three-dimensional (3D) analysis. Mesh is generated to capture the details of the fluid cavity for frequency range between 0 and 2000Hz. After defining acoustic properties, acoustic boundary conditions and loads were defined at inlet and outlet ports before computation. Postprocessed acoustic results of the modal shapes and transmission loss (TL) characteristics of the two configurations were obtained and compared for geometries of the same helical pitch. It was established that whereas plane wave propagation in a simple expansion chamber (SEC) resulted in a clearly defined acoustic pressure pattern across the propagation path, the distribution in the configurations with and without the central tube depicted three-dimensional acoustic wave propagation characteristics, with patterns scattering or consolidating to regions of either very low or very high acoustic pressure differentials. A difference of about 80 decibels between the highest and lowest acoustic pressure levels was observed for the modal duct of the geometry with four turns and with a central tube. On the other hand, the shape of the TL curve shifts from a sinusoidal-shaped profile with well-defined peaks and valleys in definite multiples of π for the simple expansion chamber, while that of the other two configurations depended on the variation in wavelength that affects the location of occurrence of cut-on or cut-off frequency. The geometry with four turns and a central tube had a maximum value of TL of about 90 decibels at approximately 1900Hz.


Acta Acustica ◽  
2020 ◽  
Vol 5 ◽  
pp. 3
Author(s):  
Aida Hejazi Nooghabi ◽  
Quentin Grimal ◽  
Anthony Herrel ◽  
Michael Reinwald ◽  
Lapo Boschi

We implement a new algorithm to model acoustic wave propagation through and around a dolphin skull, using the k-Wave software package [1]. The equation of motion is integrated numerically in a complex three-dimensional structure via a pseudospectral scheme which, importantly, accounts for lateral heterogeneities in the mechanical properties of bone. Modeling wave propagation in the skull of dolphins contributes to our understanding of how their sound localization and echolocation mechanisms work. Dolphins are known to be highly effective at localizing sound sources; in particular, they have been shown to be equally sensitive to changes in the elevation and azimuth of the sound source, while other studied species, e.g. humans, are much more sensitive to the latter than to the former. A laboratory experiment conducted by our team on a dry skull [2] has shown that sound reverberated in bones could possibly play an important role in enhancing localization accuracy, and it has been speculated that the dolphin sound localization system could somehow rely on the analysis of this information. We employ our new numerical model to simulate the response of the same skull used by [2] to sound sources at a wide and dense set of locations on the vertical plane. This work is the first step towards the implementation of a new tool for modeling source (echo)location in dolphins; in future work, this will allow us to effectively explore a wide variety of emitted signals and anatomical features.


2021 ◽  
Vol 263 (5) ◽  
pp. 1744-1755
Author(s):  
Pranav Sriganesh ◽  
Rick Dehner ◽  
Ahmet Selamet

Decades of successful research and development on automotive silencers for engine breathing systems have brought about significant reductions in emitted engine noise. A majority of this research has pursued airborne noise at relatively low frequencies, which typically involve plane wave propagation. However, with the increasing demand for downsized turbocharged engines in passenger cars, high-frequency compressor noise has become a challenge in engine induction systems. Elevated frequencies promote multi-dimensional wave propagation rendering at times conventional silencer treatments ineffective due to the underlying assumption of one-dimensional wave propagation in their design. The present work focuses on developing a high-frequency silencer that targets tonal noise at the blade-pass frequency within the compressor inlet duct for a wide range of rotational speeds. The approach features a novel "acoustic straightener" that creates exclusive plane wave propagation near the silencing elements. An analytical treatment is combined with a three-dimensional acoustic finite element method to guide the early design process. The effects of mean flow and nonlinearities on acoustics are then captured by three-dimensional computational fluid dynamics simulations. The configuration developed by the current computational effort will set the stage for further refinement through future experiments.


2013 ◽  
Vol 18 (4) ◽  
pp. 1067-1086
Author(s):  
R. Kumar ◽  
V. Gupta

Abstract In this work, a compact form of different theories of thermoelasticity is considered. The governing equations for particle motion in a homogeneous isotropic thermoelastic medium are presented. Uniqueness and reciprocity theorems are proved. The plane wave propagation in a homogeneous isotropic thermoelastic medium is studied. For a three dimensional problem there exist four waves, namely a P-wave, two transverse waves (S1, S2) and a thermal wave (T). From the obtained results the different characteristics of waves such as the phase velocity and attenuation coefficient are computed numerically and presented graphically. Some special cases are also discussed.


2021 ◽  
Vol 11 (12) ◽  
pp. 5638
Author(s):  
Selahattin Kocaman ◽  
Stefania Evangelista ◽  
Hasan Guzel ◽  
Kaan Dal ◽  
Ada Yilmaz ◽  
...  

Dam-break flood waves represent a severe threat to people and properties located in downstream regions. Although dam failure has been among the main subjects investigated in academia, little effort has been made toward investigating wave propagation under the influence of tailwater depth. This work presents three-dimensional (3D) numerical simulations of laboratory experiments of dam-breaks with tailwater performed at the Laboratory of Hydraulics of Iskenderun Technical University, Turkey. The dam-break wave was generated by the instantaneous removal of a sluice gate positioned at the center of a transversal wall forming the reservoir. Specifically, in order to understand the influence of tailwater level on wave propagation, three tests were conducted under the conditions of dry and wet downstream bottom with two different tailwater depths, respectively. The present research analyzes the propagation of the positive and negative wave originated by the dam-break, as well as the wave reflection against the channel’s downstream closed boundary. Digital image processing was used to track water surface patterns, and ultrasonic sensors were positioned at five different locations along the channel in order to obtain water stage hydrographs. Laboratory measurements were compared against the numerical results obtained through FLOW-3D commercial software, solving the 3D Reynolds-Averaged Navier–Stokes (RANS) with the k-ε turbulence model for closure, and Shallow Water Equations (SWEs). The comparison achieved a reasonable agreement with both numerical models, although the RANS showed in general, as expected, a better performance.


1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


Sign in / Sign up

Export Citation Format

Share Document