Interpretation of depositional facies from seismic data

Geophysics ◽  
1979 ◽  
Vol 44 (2) ◽  
pp. 131-160 ◽  
Author(s):  
J. B. Sangree ◽  
J. M. Widmier

Depositional environments can be predicted from seismic data through an orderly approach to the interpretation of seismic reflections. One keystone to this approach is an understanding of the effects of lithology and bed spacing on reflection parameters. Amplitude, frequency, and continuity are some of the parameters most useful for interpreting environments. Reflection amplitude contains information on the velocity and density contrasts at individual interfaces and on the extent of interbedding. Frequency is primarily a characteristic of the nature of the seismic pulse, but it is also related to such geologic factors as the spacing of reflectors or lateral changes in interval velocity. Continuity of reflections is closely associated with continuity of bedding (e.g., continuous reflections suggest widespread, layered deposits). A second keystone to this interpretive approach is the parallelism of reflection cycles to gross bedding and, therefore, to physical surfaces that separate older from younger sediments. Exceptions to this concept include (1) fluid contact reflections, (2) limitations imposed by seismic resolution, and (3) various non‐geologic coherent events. In spite of these exceptions, this concept provides a powerful tool for the analysis of reflection patterns. Reflection cycle patterns include the configuration of reflections (i.e., layered, chaotic, and reflection‐free) and the nature of cycle terminations at the depositional unit boundaries. The external form of the depositional unit can be analyzed from a grid of seismic lines and is valuable in interpreting the depositional processes responsible for the unit. Sheet, sheet drape, wedge, lens, fan, and other forms are described. The areal associations of these forms are often critical to environmental interpretation. Examples of facies interpretation from seismic sections are shown for depositional environments ranging from shelf to basin floor.

2014 ◽  
Vol 54 (2) ◽  
pp. 1 ◽  
Author(s):  
Gerry O’Halloran ◽  
Chris Hurren ◽  
Tim O’Hara

The Late Jurassic–Early Cretaceous Eskdale and Macedon members of the lower Barrow Group comprise some of the main oil-bearing reservoirs in the Exmouth Sub-basin. These high quality sandstones form the reservoirs in the Stybarrow and Eskdale oil fields. Understanding the architecture of these deepwater successions is important in both exploration and development projects. This paper documents detailed stratigraphic relationships and depositional geometries as defined on high quality seismic data sets and associated well data. An initial phase of lowstand deposition (Eskdale Member) is recorded by the development of two main canyon systems; the Eskdale and slightly younger Laverda canyons. These systems are remarkably well imaged on 3D seismic data, allowing for detailed definition of channel morphology and associated fill and spill facies. Channel complexes are up to 1 km-wide and 100 m-deep, and display evidence for multiple phases of erosion and in-channel aggradation. Overbank/spill facies are also identifiable, including crevasse lateral lobes and ‘chute’ channels. These canyon systems fed contemporaneous downdip basin floor fans that display a variety of classical fan morphologies and depositional elements including terminal lobes, fan pinchout edges, distributary channel systems and localised outflow facies. The distribution and morphology of the Eskdale and Laverda canyons and associated fan intervals can be related to topographic gradient changes within the basin (i.e. from shelf to slope to basin floor). These topographic changes are in turn a response to regional tectonism, in particular active rifting along basin margins. An ensuing phase of less confined, shelf-slope turbidite deposition (Macedon Member) records late-stage lowstand processes. Detailed well and seismic control from the Stybarrow Field and surrounding areas has identified multicyclic sands recording deposition of stacked turbidite lobes. These lobe complexes are more laterally continuous than the canyon facies and are comprised of amalgamated sheet sands and lower-relief channel sands, and are generally between 15–25 m thick. In the greater Stybarrow area the original lobate geometries have been subsequently modified by a phase of late-stage erosion. Outcrop analogues for the Macedon Member can be seen in the lobe complexes from the Tanqua Fan intervals of the Karoo Basin, which are similar in both scale and morphology. These lobe complexes extend laterally for tens of kilometres with constituent individual lobes often displaying evidence for compensational depositional processes. This paper was originally published in the Proceedings of the West Australian Basins Symposium 2013, which was held from 18–21 August 2013 in Perth, Australia.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. W1-W16 ◽  
Author(s):  
Chen Liang ◽  
John Castagna ◽  
Ricardo Zavala Torres

Various postprocessing methods can be applied to seismic data to extend the spectral bandwidth and potentially increase the seismic resolution. Frequency invention techniques, including phase acceleration and loop reconvolution, produce spectrally broadened seismic sections but arbitrarily create high frequencies without a physical basis. Tests in extending the bandwidth of low-frequency synthetics using these methods indicate that the invented frequencies do not tie high-frequency synthetics generated from the same reflectivity series. Furthermore, synthetic wedge models indicate that the invented high-frequency seismic traces do not improve thin-layer resolution. Frequency invention outputs may serve as useful attributes, but they should not be used for quantitative work and do not improve actual resolution. On the other hand, under appropriate circumstances, layer frequency responses can be extrapolated to frequencies outside the band of the original data using spectral periodicities determined from within the original seismic bandwidth. This can be accomplished by harmonic extrapolation. For blocky earth structures, synthetic tests show that such spectral extrapolation can readily double the bandwidth, even in the presence of noise. Wedge models illustrate the resulting resolution improvement. Synthetic tests suggest that the more complicated the earth structure, the less valid the bandwidth extension that harmonic extrapolation can achieve. Tests of the frequency invention methods and harmonic extrapolation on field seismic data demonstrate that (1) the frequency invention methods modify the original seismic band such that the original data cannot be recovered by simple band-pass filtering, whereas harmonic extrapolation can be filtered back to the original band with good fidelity and (2) harmonic extrapolation exhibits acceptable ties between real and synthetic seismic data outside the original seismic band, whereas frequency invention methods have unfavorable well ties in the cases studied.


2021 ◽  
pp. M57-2019-14
Author(s):  
Mikhail V. Skaryatin ◽  
Ekaterina A. Bulgakova ◽  
Vladimir E. Verzhbitskiy ◽  
Nikolay A. Malyshev ◽  
Viktor V. Obmetko ◽  
...  

AbstractThe South Chukchi-Hope Tectono-Sedimentary Element rests on the Neocomian folded basement formed as a result of the South Anyui palaeo-ocean closure. The interpretation of 2D seismic data as well as results of onshore structural field studies and dating of post-kinematic granite plutons suggest post-collisional extensional/transtensional regimes, potentially driving development of the South Chukchi-Hope Basin. The orogenic collapse occurred during the Aptian-Albian and followed by continued poly-phase extensional/transtensional regime during the Late Cretaceous and Cenozoic. Depositional environments in the basin were most likely non-marine in the Cretaceous and Early Tertiary and marine from the Late Oligocene (?) - Miocene onwards. Three onshore wells in the adjacent depocentres penetrated Tertiary sediments and have had gas shows from two sites. Geochemical surveys registered anomalies of thermogenic and biogenic methane and in some instances higher molecular ethane to penthane gases in sea-bottom sediments above gas chimneys observed on seismic lines. The tectono-sedimentary element is characterized by a very high present-day thermal gradient of up to 48 deg. C/km recorded in the Alaskan wells and was previously considered to be gas-prone.


Author(s):  
Nina Skaarup ◽  
James A. Chalmers

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Skaarup, N., & Chalmers, J. A. (1998). A possible new hydrocarbon play, offshore central West Greenland. Geology of Greenland Survey Bulletin, 180, 28-30. https://doi.org/10.34194/ggub.v180.5082 _______________ The discovery of extensive seeps of crude oil onshore central West Greenland (Christiansen et al. 1992, 1994, 1995, 1996, 1997, 1998, this volume; Christiansen 1993) means that the central West Greenland area is now prospective for hydrocarbons in its own right. Analysis of the oils (Bojesen-Koefoed et al. in press) shows that their source rocks are probably nearby and, because the oils are found within the Lower Tertiary basalts, the source rocks must be below the basalts. It is therefore possible that in the offshore area oil could have migrated through the basalts and be trapped in overlying sediments. In the offshore area to the west of Disko and Nuussuaq (Fig. 1), Whittaker (1995, 1996) interpreted a few multichannel seismic lines acquired in 1990, together with some seismic data acquired by industry in the 1970s. He described a number of large rotated fault-blocks containing structural closures at top basalt level that could indicate leads capable of trapping hydrocarbons. In order to investigate Whittaker’s (1995, 1996) interpretation, in 1995 the Geological Survey of Greenland acquired 1960 km new multichannel seismic data (Fig. 1) using funds provided by the Government of Greenland, Minerals Office (now Bureau of Minerals and Petroleum) and the Danish State through the Mineral Resources Administration for Greenland. The data were acquired using the Danish Naval vessel Thetis which had been adapted to accommodate seismic equipment. The data acquired in 1995 have been integrated with the older data and an interpretation has been carried out of the structure of the top basalt reflection. This work shows a fault pattern in general agreement with that of Whittaker (1995, 1996), although there are differences in detail. In particular the largest structural closure reported by Whittaker (1995) has not been confirmed. Furthermore, one of Whittaker’s (1995) smaller leads seems to be larger than he had interpreted and may be associated with a DHI (direct hydrocarbon indicator) in the form of a ‘bright spot’.


2015 ◽  
Vol 3 (1) ◽  
pp. SB5-SB15 ◽  
Author(s):  
Kurt J. Marfurt ◽  
Tiago M. Alves

Seismic attributes are routinely used to accelerate and quantify the interpretation of tectonic features in 3D seismic data. Coherence (or variance) cubes delineate the edges of megablocks and faulted strata, curvature delineates folds and flexures, while spectral components delineate lateral changes in thickness and lithology. Seismic attributes are at their best in extracting subtle and easy to overlook features on high-quality seismic data. However, seismic attributes can also exacerbate otherwise subtle effects such as acquisition footprint and velocity pull-up/push-down, as well as small processing and velocity errors in seismic imaging. As a result, the chance that an interpreter will suffer a pitfall is inversely proportional to his or her experience. Interpreters with a history of making conventional maps from vertical seismic sections will have previously encountered problems associated with acquisition, processing, and imaging. Because they know that attributes are a direct measure of the seismic amplitude data, they are not surprised that such attributes “accurately” represent these familiar errors. Less experienced interpreters may encounter these errors for the first time. Regardless of their level of experience, all interpreters are faced with increasingly larger seismic data volumes in which seismic attributes become valuable tools that aid in mapping and communicating geologic features of interest to their colleagues. In terms of attributes, structural pitfalls fall into two general categories: false structures due to seismic noise and processing errors including velocity pull-up/push-down due to lateral variations in the overburden and errors made in attribute computation by not accounting for structural dip. We evaluate these errors using 3D data volumes and find areas where present-day attributes do not provide the images we want.


1991 ◽  
Vol 02 (01) ◽  
pp. 223-226
Author(s):  
VIRGIL BARDAN

In this paper the processing of triangularly sampled 2-D seismic data is illustrated by examples of synthetic and field seismic sections.


Geophysics ◽  
1988 ◽  
Vol 53 (7) ◽  
pp. 894-902 ◽  
Author(s):  
Ruhi Saatçilar ◽  
Nezihi Canitez

Amplitude‐ and frequency‐modulated wave motion constitute the ground‐roll noise in seismic reflection prospecting. Hence, it is possible to eliminate ground roll by applying one‐dimensional, linear frequency‐modulated matched filters. These filters effectively attenuate the ground‐roll energy without damaging the signal wavelet inside or outside the ground roll’s frequency interval. When the frequency bands of seismic reflections and ground roll overlap, the new filters eliminate the ground roll more effectively than conventional frequency and multichannel filters without affecting the vertical resolution of the seismic data.


2021 ◽  
Author(s):  
Kangxu Ren ◽  
Junfeng Zhao ◽  
Jian Zhao ◽  
Xilong Sun

Abstract At least three very different oil-water contacts (OWC) encountered in the deepwater, huge anticline, pre-salt carbonate reservoirs of X oilfield, Santos Basin, Brazil. The boundaries identification between different OWC units was very important to help calculating the reserves in place, which was the core factor for the development campaign. Based on analysis of wells pressure interference testing data, and interpretation of tight intervals in boreholes, predicating the pre-salt distribution of igneous rocks, intrusion baked aureoles, the silicification and the high GR carbonate rocks, the viewpoint of boundaries developed between different OWC sub-units in the lower parts of this complex carbonate reservoirs had been better understood. Core samples, logging curves, including conventional logging and other special types such as NMR, UBI and ECS, as well as the multi-parameters inversion seismic data, were adopted to confirm the tight intervals in boreholes and to predicate the possible divided boundaries between wells. In the X oilfield, hundreds of meters pre-salt carbonate reservoir had been confirmed to be laterally connected, i.e., the connected intervals including almost the whole Barra Velha Formation and/or the main parts of the Itapema Formation. However, in the middle and/or the lower sections of pre-salt target layers, the situation changed because there developed many complicated tight bodies, which were formed by intrusive diabase dykes and/or sills and the tight carbonate rocks. Many pre-salt inner-layers diabases in X oilfield had very low porosity and permeability. The tight carbonate rocks mostly developed either during early sedimentary process or by latter intrusion metamorphism and/or silicification. Tight bodies were firstly identified in drilled wells with the help of core samples and logging curves. Then, the continuous boundary were discerned on inversion seismic sections marked by wells. This paper showed the idea of coupling the different OWC units in a deepwater pre-salt carbonate play with complicated tight bodies. With the marking of wells, spatial distributions of tight layers were successfully discerned and predicated on inversion seismic sections.


2021 ◽  
Author(s):  
Simon Blondel ◽  
Angelo Camerlenghi ◽  
Anna Del Ben ◽  
Massimo Bellucci

<p>This study presents the interpretation of reprocessed seismic data covering the southwestern Balearic promontory and the central Algerian basin. The new depth processing of 2D seismic lines dataset allows for the first time a good resolution on salt structures in the deep basin. Most of the salt structures result from active diapirism. In the deep basin, sedimentary loads and regional shortening are proposed to be the dominant driving forces, showing an overall contractional salt system. The north Algerian margin tectonic reactivation could have provoked a regional shortening of the salt structures and overburden. Identified unconformities suggest that this process probably started shortly after salt deposition and is still active nowadays. It is expressed by salt sheets, pinched diapirs and a décollement level. The African convergence and the narrowness of the western Algerian basin could be the explanation of an overall greater salt deformation intensity compared to the eastern Algerian basin. This demonstrates how in tectonic and sedimentary components appear to be dominant in salt deformation in the central Algerian basin compared to gravitational gliding, only localized in the proximal parts of the margin.</p>


Sign in / Sign up

Export Citation Format

Share Document