The South Chukchi-Hope Tectono-Sedimentary Element

2021 ◽  
pp. M57-2019-14
Author(s):  
Mikhail V. Skaryatin ◽  
Ekaterina A. Bulgakova ◽  
Vladimir E. Verzhbitskiy ◽  
Nikolay A. Malyshev ◽  
Viktor V. Obmetko ◽  
...  

AbstractThe South Chukchi-Hope Tectono-Sedimentary Element rests on the Neocomian folded basement formed as a result of the South Anyui palaeo-ocean closure. The interpretation of 2D seismic data as well as results of onshore structural field studies and dating of post-kinematic granite plutons suggest post-collisional extensional/transtensional regimes, potentially driving development of the South Chukchi-Hope Basin. The orogenic collapse occurred during the Aptian-Albian and followed by continued poly-phase extensional/transtensional regime during the Late Cretaceous and Cenozoic. Depositional environments in the basin were most likely non-marine in the Cretaceous and Early Tertiary and marine from the Late Oligocene (?) - Miocene onwards. Three onshore wells in the adjacent depocentres penetrated Tertiary sediments and have had gas shows from two sites. Geochemical surveys registered anomalies of thermogenic and biogenic methane and in some instances higher molecular ethane to penthane gases in sea-bottom sediments above gas chimneys observed on seismic lines. The tectono-sedimentary element is characterized by a very high present-day thermal gradient of up to 48 deg. C/km recorded in the Alaskan wells and was previously considered to be gas-prone.

Geophysics ◽  
1979 ◽  
Vol 44 (2) ◽  
pp. 131-160 ◽  
Author(s):  
J. B. Sangree ◽  
J. M. Widmier

Depositional environments can be predicted from seismic data through an orderly approach to the interpretation of seismic reflections. One keystone to this approach is an understanding of the effects of lithology and bed spacing on reflection parameters. Amplitude, frequency, and continuity are some of the parameters most useful for interpreting environments. Reflection amplitude contains information on the velocity and density contrasts at individual interfaces and on the extent of interbedding. Frequency is primarily a characteristic of the nature of the seismic pulse, but it is also related to such geologic factors as the spacing of reflectors or lateral changes in interval velocity. Continuity of reflections is closely associated with continuity of bedding (e.g., continuous reflections suggest widespread, layered deposits). A second keystone to this interpretive approach is the parallelism of reflection cycles to gross bedding and, therefore, to physical surfaces that separate older from younger sediments. Exceptions to this concept include (1) fluid contact reflections, (2) limitations imposed by seismic resolution, and (3) various non‐geologic coherent events. In spite of these exceptions, this concept provides a powerful tool for the analysis of reflection patterns. Reflection cycle patterns include the configuration of reflections (i.e., layered, chaotic, and reflection‐free) and the nature of cycle terminations at the depositional unit boundaries. The external form of the depositional unit can be analyzed from a grid of seismic lines and is valuable in interpreting the depositional processes responsible for the unit. Sheet, sheet drape, wedge, lens, fan, and other forms are described. The areal associations of these forms are often critical to environmental interpretation. Examples of facies interpretation from seismic sections are shown for depositional environments ranging from shelf to basin floor.


Author(s):  
Nina Skaarup ◽  
James A. Chalmers

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Skaarup, N., & Chalmers, J. A. (1998). A possible new hydrocarbon play, offshore central West Greenland. Geology of Greenland Survey Bulletin, 180, 28-30. https://doi.org/10.34194/ggub.v180.5082 _______________ The discovery of extensive seeps of crude oil onshore central West Greenland (Christiansen et al. 1992, 1994, 1995, 1996, 1997, 1998, this volume; Christiansen 1993) means that the central West Greenland area is now prospective for hydrocarbons in its own right. Analysis of the oils (Bojesen-Koefoed et al. in press) shows that their source rocks are probably nearby and, because the oils are found within the Lower Tertiary basalts, the source rocks must be below the basalts. It is therefore possible that in the offshore area oil could have migrated through the basalts and be trapped in overlying sediments. In the offshore area to the west of Disko and Nuussuaq (Fig. 1), Whittaker (1995, 1996) interpreted a few multichannel seismic lines acquired in 1990, together with some seismic data acquired by industry in the 1970s. He described a number of large rotated fault-blocks containing structural closures at top basalt level that could indicate leads capable of trapping hydrocarbons. In order to investigate Whittaker’s (1995, 1996) interpretation, in 1995 the Geological Survey of Greenland acquired 1960 km new multichannel seismic data (Fig. 1) using funds provided by the Government of Greenland, Minerals Office (now Bureau of Minerals and Petroleum) and the Danish State through the Mineral Resources Administration for Greenland. The data were acquired using the Danish Naval vessel Thetis which had been adapted to accommodate seismic equipment. The data acquired in 1995 have been integrated with the older data and an interpretation has been carried out of the structure of the top basalt reflection. This work shows a fault pattern in general agreement with that of Whittaker (1995, 1996), although there are differences in detail. In particular the largest structural closure reported by Whittaker (1995) has not been confirmed. Furthermore, one of Whittaker’s (1995) smaller leads seems to be larger than he had interpreted and may be associated with a DHI (direct hydrocarbon indicator) in the form of a ‘bright spot’.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Maren Vormann ◽  
Wilfried Jokat

AbstractThe East African margin between the Somali Basin in the north and the Natal Basin in the south formed as a result of the Jurassic/Cretaceous dispersal of Gondwana. While the initial movements between East and West Gondwana left (oblique) rifted margins behind, the subsequent southward drift of East Gondwana from 157 Ma onwards created a major shear zone, the Davie Fracture Zone (DFZ), along East Africa. To document the structural variability of the DFZ, several deep seismic lines were acquired off northern Mozambique. The profiles clearly indicate the structural changes along the shear zone from an elevated continental block in the south (14°–20°S) to non-elevated basement covered by up to 6-km-thick sediments in the north (9°–13°S). Here, we compile the geological/geophysical knowledge of five profiles along East Africa and interpret them in the context of one of the latest kinematic reconstructions. A pre-rift position of the detached continental sliver of the Davie Ridge between Tanzania/Kenya and southeastern Madagascar fits to this kinematic reconstruction without general changes of the rotation poles.


2021 ◽  
Vol 42 (1) ◽  
Author(s):  
Ho-Young Lee ◽  
Nam-Hyung Koo ◽  
Byoung-Yeop Kim ◽  
Young-Jun Kim ◽  
Woohyun Son ◽  
...  

1988 ◽  
Vol 2 (1) ◽  
pp. 191-202 ◽  
Author(s):  
Richard H Thaler

Next time that you find yourself a little short of cash for lunch, try the following experiment in your class. Take a jar and fill it with coins, noting the total value of the coins. Now auction off the jar to your class (offering to pay the winning bidder in bills to control for penny aversion). Chances are very high that the following results will be obtained: (1) the average bid will be significantly less than the value of the coins (bidders are risk averse); (2) the winning bid will exceed the value of the jar. Therefore, you will have money for lunch, and your students will have learned first-hand about the “winner's curse.” The winner's curse cannot occur if all the bidders are rational, so evidence of a winner's curse in market settings would constitute an anomaly. However, acting rationally in a common value auction can be difficult. Solving for the optimal bid is not trivial. Thus, it is an empirical question whether bidders in various contexts get it right or are cursed. I will present some evidence, both from experimental and field studies, suggesting that the winner's curse may be a common phenomenon.


2021 ◽  
Author(s):  
Simon Blondel ◽  
Angelo Camerlenghi ◽  
Anna Del Ben ◽  
Massimo Bellucci

<p>This study presents the interpretation of reprocessed seismic data covering the southwestern Balearic promontory and the central Algerian basin. The new depth processing of 2D seismic lines dataset allows for the first time a good resolution on salt structures in the deep basin. Most of the salt structures result from active diapirism. In the deep basin, sedimentary loads and regional shortening are proposed to be the dominant driving forces, showing an overall contractional salt system. The north Algerian margin tectonic reactivation could have provoked a regional shortening of the salt structures and overburden. Identified unconformities suggest that this process probably started shortly after salt deposition and is still active nowadays. It is expressed by salt sheets, pinched diapirs and a décollement level. The African convergence and the narrowness of the western Algerian basin could be the explanation of an overall greater salt deformation intensity compared to the eastern Algerian basin. This demonstrates how in tectonic and sedimentary components appear to be dominant in salt deformation in the central Algerian basin compared to gravitational gliding, only localized in the proximal parts of the margin.</p>


2018 ◽  
Vol 6 (4) ◽  
pp. SO17-SO29 ◽  
Author(s):  
Yaneng Luo ◽  
Handong Huang ◽  
Yadi Yang ◽  
Qixin Li ◽  
Sheng Zhang ◽  
...  

In recent years, many important discoveries have been made in the marine deepwater hydrocarbon exploration in the South China Sea, which indicates the huge exploration potential of this area. However, the seismic prediction of deepwater reservoirs is very challenging because of the complex sedimentation, the ghost problem, and the low exploration level with sparse wells in deepwater areas. Conventional impedance inversion methods interpolate the low frequencies from well-log data with the constraints of interpreted horizons to fill in the frequency gap between the seismic velocity and seismic data and thereby recover the absolute impedance values that may be inaccurate and cause biased inversion results if wells are sparse and geology is complex. The variable-depth streamer seismic data contain the missing low frequencies and provide a new opportunity to remove the need to estimate the low-frequency components from well-log data. Therefore, we first developed a broadband seismic-driven impedance inversion approach using the seismic velocity as initial low-frequency model based on the Bayesian framework. The synthetic data example demonstrates that our broadband impedance inversion approach is of high resolution and it can automatically balance between the inversion resolution and stability. Then, we perform seismic sedimentology stratal slices on the broadband seismic data to analyze the depositional evolution history of the deepwater reservoirs. Finally, we combine the broadband amplitude stratal slices with the impedance inversion results to comprehensively predict the distribution of deepwater reservoirs. Real data application results in the South China Sea verify the feasibility and effectiveness of our method, which can provide a guidance for the future deepwater hydrocarbon exploration in this area.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. WC69-WC79 ◽  
Author(s):  
Mahdieh Dehghannejad ◽  
Alireza Malehmir ◽  
Christopher Juhlin ◽  
Pietari Skyttä

The Kristineberg mining area in the western part of the Skellefte ore district is the largest base metal producer in northern Sweden and currently the subject of extensive geophysical and geologic studies aimed at constructing 3D geologic models. Seismic reflection data form the backbone of the geologic modeling in the study area. A geologic cross section close to the Kristineberg mine was used to generate synthetic seismic data using acoustic and elastic finite-difference algorithms to provide further insight about the nature of reflections and processing challenges when attempting to image the steeply dipping structures within the study area. Synthetic data suggest processing artifacts manifested themselves in the final 2D images as steeply dipping events that could be confused with reflections. Fewer artifacts are observed when the data are processed using prestack time migration. Prestack time migration also was performed on high-resolution seismic data recently collected near the Kristineberg mine and helped to image a high-amplitude, gently dipping reflection occurring stratigraphically above the extension of the deepest Kristineberg deposit. Swath 3D processing was applied to two crossing seismic lines, west of the Kristineberg mine, to provide information on the 3D geometry of an apparently flat-lying reflection observed in both of the profiles. The processing indicated that the reflection dips about 30° to the southwest and is generated at the contact between metasedimentary and metavolcanic rocks, the upper part of the latter unit being the most typical stratigraphic level for the massive sulfide deposits in the Skellefte district.


2021 ◽  
Author(s):  
Riyadh Alhajni

Abstract This research compares the results of each method to solve problems caused by sand dunes, In the southwestern region of Libya, the Murzuq basin is covered with sand dunes, which are a significant source of noise in land seismic data, which caused issues in seismic processing, also sand dunes cause increases of travel time of reflected events in seismic data, procuring false structures this problem caused by residual static errors. The presence of extensive sand dunes causes logistic and technical difficulties for seismic reflection prospecting, Due to the steep angle of repose of the sand dunes faces and the low seismic velocity within them, which causes significant time delay to the reflected waves. In this research, three seismic lines (202, 207, 209), of total length 12 km, have been completely reprocessed at Western Geco processing center (Tripoli) using omega software. the methods of gain corrections: time function gain and geometric spreading. Spreading amplitude compensation, has been proceed the results will be compared to another method of gain corrections called residual amplitude analysis compensation (RAAC) which is has better results for static problems the conventional method of computing field statics has been implemented and the result is compared with elevation static. It is obtained by using uphole method (conventional method) yielded a significant improvement over the elevation method.


Author(s):  
Onyewuchi, Chinedu Vin ◽  
Minapuye, I. Odigi

Facies analysis and depositional environment identification of the Vin field was evaluated through the integration and comparison of results from wireline logs, core analysis, seismic data, ditch cutting samples and petrophysical parameters. Well log suites from 22 wells comprising gamma ray, resistivity, neutron, density, seismic data, and ditch cutting samples were obtained and analyzed. Prediction of depositional environment was made through the usage of wireline log shapes of facies combined with result from cores and ditch cuttings sample description. The aims of this study were to identify the facies and depositional environments of the D-3 reservoir sand in the Vin field. Two sets of correlations were made on the E-W trend to validate the reservoir top and base while the isopach map was used to establish the reservoir continuity. Facies analysis was carried out to identify the various depositional environments. The result showed that the reservoir is an elongate , four way dip closed roll over anticline associated with an E-W trending growth fault and contains two structural high separated by a saddle. The offshore bar unit is an elongate sand body with length: width ratio of >3:1 and is aligned parallel to the coast-line. Analysis of the gamma ray logs indicated that four log facies were recognized in all the wells used for the study. These include: Funnel-shaped (coarsening upward sequences), bell-shaped or fining upward sequences, the bow shape and irregular shape. Based on these categories of facies, the depositional environments were interpreted as deltaic distributaries, regressive barrier bars, reworked offshore bars and shallow marine. Analysis of the wireline logs and their core/ditch cuttings description has led to the conclusion that the reservoir sandstones of the Agbada Formation in the Vin field of the eastern Niger Delta is predominantly marine deltaic sequence, strongly influenced by clastic output from the Niger Delta. Deposition occurred in a variety of littoral and neritic environment ranging from barrier sand complex to fully marine outer shelf mudstones.


Sign in / Sign up

Export Citation Format

Share Document