Paper 17: Microtopography of Surfaces

Author(s):  
J. B. P. Williamson

This paper describes an approach to the study of surfaces based on the digital analysis of data obtained from profilometric examinations. This technique is used to determine several new surface texture parameters, including the surface density, height distribution, and mean radius of curvature of the asperities. Recent theories have shown that these are the parameters which control the nature of surface contact. The implications which these ideas have for the science of metrology are discussed. The study also shows that many surfaces have height distributions which are Gaussian, and in particular that the heights of the upper half of most surfaces closely follow a Gaussian distribution. By combining data obtained from many closely spaced parallel profiles it has been possible to reconstruct detailed maps of the surface texture. Two examples are discussed: bead-blasted aluminium, and a glass surface lightly blasted with alumina. One of the advantages of microcartography is that it permits the geometry of the contact between rough surfaces to be studied in detail. A map is given showing the manner in which the contact area between two bead-blasted aluminium surfaces splits into sub-areas, and how these sub-areas are distributed with respect to the surface features of the contacting solids.

2000 ◽  
Vol 123 (2) ◽  
pp. 350-357 ◽  
Author(s):  
Mingwu Bai ◽  
Koji Kato

To meet the ever-increasing magnetic recording density, the hard disk industry is focusing on reducing flying height. Texturing the slider surface to reduce the head–disk contact area is one of the most challenging and promising techniques in the current industry. In this study, a mathematical–physical model based on an extension of the Greenwood–Tripp model is proposed for predicting and analyzing the contact deformation and stiction between both textured disk and slider. The contact deformation and stiction of the head–disk interface is analyzed in considering surface texture parameters, lubricant properties, and loading conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wen’an Wang ◽  
Zhiqi Liu ◽  
Dongliang Chen ◽  
Zhiming Xie ◽  
Jianli Song

The surface texture, a major way to decrease friction and wear of the cylinder-piston ring friction pair, was conducted on cylinder-piston ring friction pair specimen using the orthogonal experimental design method to investigate the effect of different texture parameters (size, depth, shape, and surface density) of the friction and wear characteristics. Through simulation analysis, the texture parameters that affect the friction and wear characteristics are obtained. Using the evaluation method of friction coefficient and mass wear rate, the influence sequence and optimal values of texture parameters that affect friction and wear characteristics are obtained through range analysis. The results show that, after surface texture treatment under mixed lubrication conditions, the friction characteristics of the friction pair have changed and the friction coefficient and friction and wear rate have been significantly reduced. The results show that the triangular texture has a good antifriction effect, the texture depth is deepened, and the surface density and the size increases have a positive effect on the improvement of friction and wear. An ultra-depth microscope was used to observe the wear morphology of the friction and wear tests. The results show that the weakening of the third body wear by the texturing treatment and the maintenance of oil lubrication are the main reasons for reducing friction and wear.


2021 ◽  
Vol 272 ◽  
pp. 121947
Author(s):  
Calypso Chadfeau ◽  
Safiullah Omary ◽  
Essia Belhaj ◽  
Christophe Fond ◽  
Françoise Feugeas

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 758
Author(s):  
Cibi Pranav ◽  
Minh-Tan Do ◽  
Yi-Chang Tsai

High Friction Surfaces (HFS) are applied to increase friction capacity on critical roadway sections, such as horizontal curves. HFS friction deterioration on these sections is a safety concern. This study deals with characterization of the aggregate loss, one of the main failure mechanisms of HFS, using texture parameters to study its relationship with friction. Tests are conducted on selected HFS spots with different aggregate loss severity levels at the National Center for Asphalt Technology (NCAT) Test Track. Friction tests are performed using a Dynamic Friction Tester (DFT). The surface texture is measured by means of a high-resolution 3D pavement scanning system (0.025 mm vertical resolution). Texture data are processed and analyzed by means of the MountainsMap software. The correlations between the DFT friction coefficient and the texture parameters confirm the impact of change in aggregates’ characteristics (including height, shape, and material volume) on friction. A novel approach to detect the HFS friction coefficient transition based on aggregate loss, inspired by previous works on the tribology of coatings, is proposed. Using the proposed approach, preliminary outcomes show it is possible to observe the rapid friction coefficient transition, similar to observations at NCAT. Perspectives for future research are presented and discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Junru Wang ◽  
Quandai Wang ◽  
Yueyan Li ◽  
Meiling Guo ◽  
Pengyang Li ◽  
...  

Purpose The purpose of this paper is to investigate the effects of surface texture with roughness orientation considered on tribological properties under a mixed lubrication state numerically and experimentally. Design/methodology/approach Based on the average Reynolds equation and asperity contact model, the impacts of surface texture parameters and roughness orientation on lubrication properties have been calculated using finite difference method. Tin–bronze samples with various prescribed surface texture geometric parameters and roughness orientation were fabricated by laser surface texturing technique, and the tribology performance of the textured surface was studied experimentally. Findings The effects of surface geometric parameters and roughness orientation parameters have been discerned. The experimental observations are in good agreement with the numerical prediction, which suggests that the numerical scheme adopted in this work is suitable in capturing the surface texture and roughness effect under mixed lubrication state. Originality/value By meticulously controlling the surface roughness and surface texture geometric characteristics based on the laser surface texturing process, samples with prescribed surface texture parameters and roughness orientation consistent with that in theoretical studies were fabricated and the theoretical model and results were verified experimentally.


2019 ◽  
Vol 799 ◽  
pp. 71-76
Author(s):  
Oskars Linins ◽  
Ernests Jansons ◽  
Armands Leitans ◽  
Irina Boiko ◽  
Janis Lungevics

The paper is aimed to the methodology for estimation of service life of mechanical engineering components in the case of elastic-plastic contact of surfaces. Well-known calculation methods depending on physics, theory of probability, the analysis of friction pair’ shape and fit include a number of parameters that are difficult or even impossible to be technologically controlled in the manufacturing of mechanical engineering components. The new approach for wear rate estimation using surface texture parameters as well as physical-mechanical properties and geometric parameters of components is proposed. The theoretical part of the calculations is based on the 3D surface texture principles, the basics of material fatigue theory, the theory of elasticity and the contact mechanics of surfaces. It is possible to calculate the service time of the machine, but the process of running-in of the components is relatively short (less than 5%), therefore, the service time is mainly determined by a normal operating period, which also was used to evaluate this period. The calculated input parameters are technologically and metrologically available and new method for calculating the service time can be used in the design process of the equipment. The results of approbation of the method for estimation service time of mechanical engineering, which prove the applicability of mentioned method, are offered as well.


Author(s):  
Turker Oktay

Surface texture of engine components such as crankshafts and camshafts is one of the most important factors that determine the performance, efficiency and the operating life of an internal combustion engine. Current practices and the challenges faced by design engineers in specifying the target surface topography to meet these goals have been reviewed. Once specified, the surface texture must be measured fast, accurately and repeatably in the rough environment of an engine manufacturing plant. The key components of an automated skidded surface finish measuring gage designed with these criteria in mind are described in this paper. The gage has 7 axes of motion and 3 stylus probes oriented in the axial and radial directions to take axial and facial measurements on journal and cam lobe surfaces and thrust bearing surfaces. The selection of surface texture parameters to best describe the desired surface texture of these engine components was investigated. The final stage of surface preparation is often the superfinishing process. The measurement gage must be able to provide the sensitivity and repeatability that are required for measuring the finely finished surfaces generated by this process. Typical surface texture results of a superfinishing process achieved on crankshafts are described. The results of a Gage Repeatability and Reproducibility (R&R) study performed on the surface texture measuring gage are presented.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5326
Author(s):  
Pawel Pawlus ◽  
Rafal Reizer ◽  
Michal Wieczorowski

Areal 3D analysis of surface texture gives more opportunities than a study of 2D profiles. Surface topography evaluation, considered as 3D dimensional analysis in micro or nanoscales, plays an important role in many fields of science and life. Among many texture parameters, those connected with height are the most often used. However, there are many other parameters and functions that can provide additional important information regarding functional behaviour of surfaces in different applications. The knowledge about the functional importance of various surface properties is low. This review tries to fill this gap. Surface texture parameters are presented in various groups: height, spatial, hybrid, functional, feature, and others. Based on experiences of the present authors and literature review, the relationships among various surface parameters and functional properties are described. A proposal of a selection of parameters on the basis of their functional significations is provided. Considerations for future challenges are addressed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makiko Yonehara ◽  
Chika Kato ◽  
Toshi-Taka Ikeshoji ◽  
Koki Takeshita ◽  
Hideki Kyogoku

AbstractThe availability of an in-situ monitoring and feedback control system during the implementation of metal additive manufacturing technology ensures that high-quality finished parts are manufactured. This study aims to investigate the correlation between the surface texture and internal defects or density of laser-beam powder-bed fusion (LB-PBF) parts. In this study, 120 cubic specimens were fabricated via application of the LB-PBF process to the IN 718 Ni alloy powder. The density and 35 areal surface-texture parameters of manufactured specimens were determined based on the ISO 25,178–2 standard. Using a statistical method, a strong correlation was observed between the areal surface-texture parameters and density or internal defects within specimens. In particular, the areal surface-texture parameters of reduced dale height, core height, root-mean-square height, and root-mean-square gradient demonstrate a strong correlation with specimen density. Therefore, in-situ monitoring of these areal surface-texture parameters can facilitate their use as control variables in the feedback system.


Sign in / Sign up

Export Citation Format

Share Document