A comparison of methods for approximating the vertical gradient of one‐dimensional magnetic field data

Geophysics ◽  
1986 ◽  
Vol 51 (9) ◽  
pp. 1725-1735 ◽  
Author(s):  
J. W. Paine

The vertical gradient of a one‐dimensional magnetic field is known to be a useful aid in interpretation of magnetic data. When the vertical gradient is required but has not been measured, it is necessary to approximate the gradient using the available total‐field data. An approximation is possible because a relationship between the total field and the vertical gradient can be established using Fourier analysis. After reviewing the theoretical basis of this relationship, a number of methods for approximating the vertical gradient are derived. These methods fall into two broad categories: methods based on the discrete Fourier transform, and methods based on discrete convolution filters. There are a number of choices necessary in designing such methods, each of which will affect the accuracy of the computed values in differing, and sometimes conflicting, ways. A comparison of the spatial and spectral accuracy of the methods derived here shows that it is possible to construct a filter which maintains a reasonable balance between the various components of the total error. Further, the structure of this filter is such that it is also computationally more efficient than methods based on fast Fourier transform techniques. The spacing and width of the convolution filter are identified as the principal factors which influence the accuracy and efficiency of the method presented here, and recommendations are made on suitable choices for these parameters.

2016 ◽  
Vol 6 (2) ◽  
Author(s):  
Ketut Gede Aryawan ◽  
Subarsyah Subarsyah

Kita mengalami kesulitan untuk mendeteksi anomali secara langsung dari data medan magnet karena mempunyai polaritas positif dan negatif. Untuk itu diperlukan teknik pemrosesan data magnet untuk memperoleh delineasi pipa yang lebih baik. Pada kasus delineasi pipa gas di laut daerah X, diterapkan teknik reduksi ke kutub (RTP) untuk mengolah data magnet total. Fast Fourier Transform (FFT) diterapkan pada proses transformasi RTP dalam 2-dimensi dan 3-dimensi menggunakan perangkat lunak Matlab dan Magpick. Hasilnya menunjukkan arah dari pipa utara-selatan dan memperlihatkan posisi dari pipa semakin jelas yang diperkirakan tepat berada di bawah puncak kurva anomali. Kata kunci: anomali magnet total, delineasi, reduksi ke kutub, transformasi fourier, klosur. We have the problem to detect anomaly directly from the magnetic field data because it have two polarities, positive and negative. We need a technique of data processing to detect magnetic anomaly better. In the case of gas pipeline delineation in X-area, Reduce to Pole (RTP) technique was applied to process total magnetic data. Fast Fourier Transform (FFT) was applied on RTP transformation process in 2-Dimension and 3-Dimension using Matlab and Magpick softwares. The result indicate that the gas pipeline is north-south direction and the position is under the peak of anomaly curve. Keywords: total magnetic anomaly, delineation, reduce to pole, fast fourier transform, closur.


2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Maysam Abedi

The presented work examines application of an Augmented Iteratively Re-weighted and Refined Least Squares method (AIRRLS) to construct a 3D magnetic susceptibility property from potential field magnetic anomalies. This algorithm replaces an lp minimization problem by a sequence of weighted linear systems in which the retrieved magnetic susceptibility model is successively converged to an optimum solution, while the regularization parameter is the stopping iteration numbers. To avoid the natural tendency of causative magnetic sources to concentrate at shallow depth, a prior depth weighting function is incorporated in the original formulation of the objective function. The speed of lp minimization problem is increased by inserting a pre-conditioner conjugate gradient method (PCCG) to solve the central system of equation in cases of large scale magnetic field data. It is assumed that there is no remanent magnetization since this study focuses on inversion of a geological structure with low magnetic susceptibility property. The method is applied on a multi-source noise-corrupted synthetic magnetic field data to demonstrate its suitability for 3D inversion, and then is applied to a real data pertaining to a geologically plausible porphyry copper unit.  The real case study located in  Semnan province of  Iran  consists  of  an arc-shaped  porphyry  andesite  covered  by  sedimentary  units  which  may  have  potential  of  mineral  occurrences, especially  porphyry copper. It is demonstrated that such structure extends down at depth, and consequently exploratory drilling is highly recommended for acquiring more pieces of information about its potential for ore-bearing mineralization.


2013 ◽  
Vol 33 (1) ◽  
pp. 121-131
Author(s):  
Novi Dwi Ariani ◽  
Thaqibul Fikri Niyartama ◽  
Nugroho Budi Wibowo

Mapping geophysics research was conducted by geomagnetic method to know anomaly pattern of magnetic pole and to know distribution location and depth of temple gate composing stone in Losari Temple Site by using magnetic data. Data collection used Proton Precessions Magnetometer (PPM) G-856AX by area width of 88 km x 40 km and measurement space of 3 meter used looping method. Field data was corrected by daily variation and IGRF (International Geomagnetics Reference Field) correction and then reduction to pole. The slice modeling was conducted on local anomaly map on height of 6 meter. The result of the local magnetic field anomalies incision then interpolated to get an idea of the spread and depth of rocks making up the fence Losari temple. Local anomaly map shows that anomaly position lies in southwest, southeast, and northeast from main temple. Based from interpolated distribution of magnetic pole anomaly is dominated in depth of 2 meter to 4 meter. 


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. J75-J84 ◽  
Author(s):  
Camriel Coleman ◽  
Yaoguo Li

Three-dimensional inversion plays an important role in the quantitative interpretation of magnetic data in exploration problems, and magnetic amplitude data can be an effective tool in cases in which remanently magnetized materials are present. Because amplitude data are typically calculated from total-field anomaly data, the error levels must be characterized for inversions. Lack of knowledge of the error in amplitude data hinders the ability to properly estimate the data misfit associated with an inverse model and, therefore, the selection of the appropriate regularization parameter for a final model. To overcome these challenges, we have investigated the propagation of errors from total-field anomaly to amplitude data. Using parametric bootstrapping, we find that the standard deviation of the noise in amplitude data is approximately equal to that of the noise in total-field anomaly data when the amplitude data are derived from the conversion of total-field data to three orthogonal components. We then illustrate how the equivalent source method can be used to estimate the error in total-field anomaly data when needed. The obtained noise estimate can be applied to amplitude inversion to recover an optimal inverse model by applying the discrepancy principle. We test this method on synthetic and field data and determine its effectiveness.


Geophysics ◽  
1948 ◽  
Vol 13 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Eugene Frowe

A magnetometer which measures the earth’s total magnetic field is described. The detector or measuring element of the magnetometer contains three mutually perpendicular elements, two of which are utilized to orient the third, which in turn operates a recording device to record the total magnetic field. The detector elements are of the inductive type and do not require ferromagnetic material to give them the high sensitivity required in geophysical work. The presence of a magnetic field in the region of the detector causes alternating currents to be generated in the detector elements. These currents are amplified to actuate motors which control the orienting and neutralizing functions of the magnetometer. A tape recorder gives continuous field readings. The accuracy of the magnetic data taken is better than five gammas.


Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 502
Author(s):  
Dedalo Marchetti ◽  
Angelo De Santis ◽  
Saioa A. Campuzano ◽  
Maurizio Soldani ◽  
Alessandro Piscini ◽  
...  

This work presents an analysis of the ESA Swarm satellite magnetic data preceding the Mw = 7.1 California Ridgecrest earthquake that occurred on 6 July 2019. In detail, we show the main results of a procedure that investigates the track-by-track residual of the magnetic field data acquired by the Swarm constellation from 1000 days before the event and inside the Dobrovolsky’s area. To exclude global geomagnetic perturbations, we select the data considering only quiet geomagnetic field time, defined by thresholds on Dst and ap geomagnetic indices, and we repeat the same analysis in two comparison areas at the same geomagnetic latitude of the Ridgecrest earthquake epicentre not affected by significant seismicity and in the same period here investigated. As the main result, we find some increases of the anomalies in the Y (East) component of the magnetic field starting from about 500 days before the earthquake. Comparing such anomalies with those in the validation areas, it seems that the geomagnetic activity over California from 222 to 168 days before the mainshock could be produced by the preparation phase of the seismic event. This anticipation time is compatible with the Rikitake empirical law, recently confirmed from Swarm satellite data. Furthermore, the Swarm Bravo satellite, i.e., that one at highest orbit, passed above the epicentral area 15 min before the earthquake and detected an anomaly mainly in the Y component. These analyses applied to the Ridgecrest earthquake not only intend to better understand the physical processes behind the preparation phase of the medium-large earthquakes in the world, but also demonstrate the usefulness of a satellite constellation to monitor the ionospheric activity and, in the future, to possibly make reliable earthquake forecasting.


2007 ◽  
Vol 15 (19) ◽  
pp. 11781 ◽  
Author(s):  
M. A. Seo ◽  
A. J. L. Adam ◽  
J. H. Kang ◽  
J. W. Lee ◽  
S. C. Jeoung ◽  
...  

Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 431-439 ◽  
Author(s):  
Yaoguo Li ◽  
Douglas W. Oldenburg

We present a method for separating regional and residual magnetic fields using a 3-D magnetic inversion algorithm. The separation is achieved by inverting the observed magnetic data from a large area to construct a regional susceptibility distribution. The magnetic field produced by the regional susceptibility model is then used as the regional field, and the residual data are obtained by simple subtraction. The advantages of this method of separation are that it introduces little distortion to the shape of the extracted anomaly and that it is not affected significantly by factors such as topography and the overlap of power spectra of regional and residual fields. The proposed method is tested using a synthetic example having varying relative positions between the local and regional sources and then using a field data set from Australia. Results show that the residual field extracted using this method enables good recovery of target susceptibility distribution from inversions.


2020 ◽  
Vol 196 ◽  
pp. 02029
Author(s):  
Sergey Y. Khomutov ◽  
Manjula Lingala

Continues magnetic measurements at the IKIR FEB RAS obser-vatories Magadan (MGD), Paratunka (PET), Yuzhno-Sakhalinsk (YSS), Cape Schmidt (CPS) and Khabarovsk (KHB) and CSIR-NGRI observatories Hyder-abad (HYB) and Choutuppal (CPL) have been started almost since their formation. A significant part of the results obtained is presented in the WDC and INTERMAGNET databases. However, a large amount of raw data remains un-processed and unavailable for using by scientific community. In the past few years, institutes has been making efforts to process and reprocess old magnetic data. Digital images of analog magnetograms of the Observatory Paratunka since 1967 were obtained and the possibility of their use for calculation hourly and minute values of magnetic field elements was evaluated. Old digital data that was available during the conversion from analog to digital magnetometers is processed. The main problem of processing or re-processing archived data is the lack of information (metadata) about the measurement conditions. First of all, these are the results of absolute observations, which are necessary to obtain the values of the elements of the total field vector. In this paper, some technologies are proposed that allow to use the data obtained during processing of analog magnetograms to adjust the digital magnetometers records. A signif-icant problem is the lack or inaccuracy of information about the temperature conditions in the variation pavilion, about magnetometers or support equipment maintenance or about works in and near the pavilions. As we accumulate the experience during the processing of old magnetic data, a “catalog” of noise and its typical images is formed. This makes it more reliable and efficient to identify and remove this noise from records.


Geophysics ◽  
1979 ◽  
Vol 44 (5) ◽  
pp. 947-958 ◽  
Author(s):  
E. Gomez Trevino ◽  
R. N. Edwards

An inexpensive, rapid method has been developed for computing all three components of the magnetic field due to galvanic current flow from a point electrode in the vicinity of a conductive subsurface structure of infinite strike‐length and arbitrary cross‐section. For any three‐dimensional (3-D) structure, the magnetic field may be written as a sum of surface integrals over boundaries defining changes in conductivity by a direct modification of the Biot‐Savart law. The integrand of each surface integral includes the components of the electric field tangential to the boundary, which may be evaluated on the boundary using a standard integral equation technique. In the case of a two‐dimensional (2-D) structure, a reformulation of the theory by taking a one‐dimensional Fourier transform along the strike results in the reduction of both the surface integrals necessary to solve the integral equation for the electric field, and the integrals used in computing the magnetic field, to line integrals in wavenumber domain. We evaluate the integrals numerically and solve the integral equation for each of about ten wavenumbers; finally, we obtain the magnetic field in space domain through a concluding one‐dimensional inverse Fourier transform. Type curves and characteristic curves for the simple model of a buried horizontal cylinder beneath a thin layer of conductive overburden are constructed. In the absence of overburden, the half‐width of the anomaly is linearly related to the depth of the cylinder. In the presence of overburden, the form of the anomaly may be predicted in a simple manner from the corresponding anomaly in the absence of overburden, provided the distance from the current source is sufficiently large for most of the available current to have penetrated the overburden.


Sign in / Sign up

Export Citation Format

Share Document