Simplified frequency‐domain expressions for potential fields of arbitrary three‐dimensional bodies

Geophysics ◽  
1988 ◽  
Vol 53 (3) ◽  
pp. 365-374 ◽  
Author(s):  
R. O. Hansen ◽  
Xiaomu Wang

Models based on homogeneous polyhedral bodies offer great flexibility in representing the potential fields of complex geologic sources. However, existing expressions for the gravity and magnetic fields of such bodies suffer from two disadvantages. First, the surface of the body must be specified as a set of triangular facets, which makes input to a modeling program rather awkward. Second, each facet of the body must be rotated into a special position, which generates substantial computational overhead and makes the analytic expressions difficult to interpret. In this paper, Pedersen’s Fourier transform expressions for the potential fields due to homogeneous polyhedral bodies are recast in a simpler, coordinate‐invariant form. The resulting expressions are then rewritten as a sum of contributions from each vertex of the body. This greatly simplified form is used as the basis for a modeling program that is substantially faster and more straightforward than existing programs. Furthermore, the analytic expressions promise to be useful for further investigation of an inverse method based on polyhedral‐body models.

1987 ◽  
Vol 58 (2) ◽  
pp. 41-52 ◽  
Author(s):  
D. N. Ravat ◽  
L. W. Braile ◽  
W. J. Hinze

Abstract A three-dimensional gravity and magnetic model of the Bloomfield Pluton near New Madrid, Missouri, has been generated that provides an excellent match to the observed gravity and magnetic anomaly maps. Although this modeling is inherently non-unique, the steep gradients on the flanks of the anomalies constrain the causative body to a relatively shallow depth (≈2 km) and define the outline of the steep-sided (near-vertical) pluton. Comparison of the configuration of the Bloomfield Pluton with concentrated microearthquake seismicity in part of the New Madrid Seismic Zone indicates that earthquakes in the northern part of the zone occur primarily on the southeastern side of the pluton at about 10 km from the edge of the body. Based on the location of hypocenters and earthquake focal mechanisms, there is no evidence that stress concentration associated with the mass excess of the pluton is the cause of earthquakes near the pluton. The seismicity may be along zones of weakness independent of the pluton. Among other explanations investigated to explain the constant distance of earthquakes from the pluton, we favor the possibility of a zone of rigidity contrast caused by the thermal metamorphism of the country rock associated with the pluton intrusion. We have estimated increased temperatures of the country rock using an instantaneous intrusion model. Maximum anomalous country rock temperatures of greater than 100°C dominated the region within 10 km of the pluton edge. This ‘thermally metamorphosed’ aureole may provide sufficient homogeneity in the upper crust to localize anomalous stresses away from the margin and along the most favorable zones of weakness, thus influencing the locations of earthquakes.


2015 ◽  
Vol 22 (5) ◽  
pp. 919-937 ◽  
Author(s):  
Luca Placidi ◽  
Amr Ramadan El Dhaba

This semi-inverse method is similar to that used in the so-called Saint-Venant problem for cylindrical three-dimensional first-gradient linear homogeneous and isotropic materials. This semi-inverse method is similar to that used by Saint-Venant to solve the omonimus problem for cylindrical three-dimensional first-gradient linear homogeneous and isotropic materials. Two examples are also presented. It is found that wedge forces are necessary to maintain the body in equilibrium and that these are not an artefact of the double application of the divergence theorem in the second-gradient material derivations.


Geophysics ◽  
2001 ◽  
Vol 66 (2) ◽  
pp. 535-539 ◽  
Author(s):  
Dimitrios Tsoulis ◽  
Sveto Petrović

The study of the gravity field of arbitrary polyhedral bodies of homogeneous density has provoked a series of publications over the last decades. Some of the researchers represented an arbitrary three dimensional body in terms of contours obtained by the intersection of horizontal planes with the body.


Author(s):  
O. Faroon ◽  
F. Al-Bagdadi ◽  
T. G. Snider ◽  
C. Titkemeyer

The lymphatic system is very important in the immunological activities of the body. Clinicians confirm the diagnosis of infectious diseases by palpating the involved cutaneous lymph node for changes in size, heat, and consistency. Clinical pathologists diagnose systemic diseases through biopsies of superficial lymph nodes. In many parts of the world the goat is considered as an important source of milk and meat products.The lymphatic system has been studied extensively. These studies lack precise information on the natural morphology of the lymph nodes and their vascular and cellular constituent. This is due to using improper technique for such studies. A few studies used the SEM, conducted by cutting the lymph node with a blade. The morphological data collected by this method are artificial and do not reflect the normal three dimensional surface of the examined area of the lymph node. SEM has been used to study the lymph vessels and lymph nodes of different animals. No information on the cutaneous lymph nodes of the goat has ever been collected using the scanning electron microscope.


Author(s):  
So Young Joo ◽  
Seung Yeol Lee ◽  
Yoon Soo Cho ◽  
Sangho Yi ◽  
Cheong Hoon Seo

Abstract Hands are the part of the body that are most commonly involved in burns, and the main complications are finger joint contractures and nerve injuries. Hypertrophic scarring cannot be avoided despite early management of acute hand burn injuries, and some patients may need application of an exoskeleton robot to restore hand function. To do this, it is essential to individualize the customization of the robot for each patient. Three-dimensional (3D) technology, which is widely used in the field of implants, anatomical models, and tissue fabrication, makes this goal achievable. Therefore, this report is a study on the usefulness of an exoskeleton robot using 3D technology for patients who lost bilateral hand function due to burn injury. Our subject was a 45-year-old man with upper limb dysfunction of 560 days after a flame and chemical burn injury, with resultant impairment of manual physical abilities. After wearing an exoskeleton robot made using 3D printing technology, he could handle objects effectively and satisfactorily. This innovative approach provided considerable advantages in terms of customization of size and reduction in manufacturing time and costs, thereby showing great potential for use in patients with hand dysfunction after burn injury.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 774
Author(s):  
Max Langer ◽  
Thomas Speck ◽  
Olga Speck

Although both the petiole and lamina of foliage leaves have been thoroughly studied, the transition zone between them has often been overlooked. We aimed to identify objectively measurable morphological and anatomical criteria for a generally valid definition of the petiole–lamina transition zone by comparing foliage leaves with various body plans (monocotyledons vs. dicotyledons) and spatial arrangements of petiole and lamina (two-dimensional vs. three-dimensional configurations). Cross-sectional geometry and tissue arrangement of petioles and transition zones were investigated via serial thin-sections and µCT. The changes in the cross-sectional geometries from the petiole to the transition zone and the course of the vascular bundles in the transition zone apparently depend on the spatial arrangement, while the arrangement of the vascular bundles in the petioles depends on the body plan. We found an exponential acropetal increase in the cross-sectional area and axial and polar second moments of area to be the defining characteristic of all transition zones studied, regardless of body plan or spatial arrangement. In conclusion, a variety of terms is used in the literature for describing the region between petiole and lamina. We prefer the term “petiole–lamina transition zone” to underline its three-dimensional nature and the integration of multiple gradients of geometry, shape, and size.


2021 ◽  
pp. 152808372110326
Author(s):  
Queenie Fok ◽  
Joanne Yip ◽  
Kit-lun Yick ◽  
Sun-pui Ng

This study focuses on the fabrication of an anisotropic textile brace that exerts corrective forces based on the three-point pressure system to treat scoliosis, which is a medical condition that involves deformity of the spine. The design and material properties of the proposed anisotropic textile brace are discussed in detail here. A case series study with 5 scoliosis patients has been conducted to investigate the immediate in-brace effect and biomechanics of the proposed brace. Radiographic examination, three-dimensional scanning of the body and interface pressure measurements have been used to evaluate the immediate effect of the proposed brace on reducing the spinal curvature and asymmetry of the body contours and its biomechanics. The results show that the proposed brace on average reduces the spinal curvature by 11.7° and also increases the symmetry of the posterior trunk by 14.1% to 43.2%. The interface pressure at the corrective pad ranges from 6.0 to 24.4 kPa. The measured interface pressure shows that a sufficient amount of pressure has been exerted and a three-point pressure distribution is realized to reduce the spinal curvature. The obtained results indicate the effectiveness of this new approach which uses elastic textile material and a hinged artificial backbone to correct spinal deformity.


Author(s):  
Kuengmi Choi ◽  
Jungil Jun ◽  
Youngshil Ryoo ◽  
Sunmi Park

A bra use can reduce physiological and physical functions because of clothing pressure, which can be a problem for new senior women starting to lose physical function. The present study presents a bra top design development method for promoting new senior women’s physical activity by identifying problems related to bras’ effects on women’s health and minimizing clothing pressure. The analysis utilized the 3D scan data of 42 adult women (age range: 50s) from the 5th Size Korea Project. Bra top design elements were extracted based on new senior consumers’ needs. We developed an average wireframe reflecting the new senior’s physical characteristics, and a standard body form was developed through surface modeling. To produce a consumer-oriented bra with a body shaping effect and reduced clothing pressure that would not affect physical activities, a three-dimensional pattern was developed applying an optimal reduction rate of 80%. To verify the bra’s adequacy for the body form of new senior women, two market-available bras were selected and fit-compared to the developed product. The developed bra received higher expert appearance evaluation and 3D virtual clothing evaluation scores. This study is significant because by using virtual fitting technology, it provides foundational data to quantify the quality of fashion products.


Sign in / Sign up

Export Citation Format

Share Document