Clinical Utility of an Exoskeleton Robot Using 3-Dimensional Scanner Modeling in Burn Patient: A Case Report

Author(s):  
So Young Joo ◽  
Seung Yeol Lee ◽  
Yoon Soo Cho ◽  
Sangho Yi ◽  
Cheong Hoon Seo

Abstract Hands are the part of the body that are most commonly involved in burns, and the main complications are finger joint contractures and nerve injuries. Hypertrophic scarring cannot be avoided despite early management of acute hand burn injuries, and some patients may need application of an exoskeleton robot to restore hand function. To do this, it is essential to individualize the customization of the robot for each patient. Three-dimensional (3D) technology, which is widely used in the field of implants, anatomical models, and tissue fabrication, makes this goal achievable. Therefore, this report is a study on the usefulness of an exoskeleton robot using 3D technology for patients who lost bilateral hand function due to burn injury. Our subject was a 45-year-old man with upper limb dysfunction of 560 days after a flame and chemical burn injury, with resultant impairment of manual physical abilities. After wearing an exoskeleton robot made using 3D printing technology, he could handle objects effectively and satisfactorily. This innovative approach provided considerable advantages in terms of customization of size and reduction in manufacturing time and costs, thereby showing great potential for use in patients with hand dysfunction after burn injury.

2021 ◽  
Vol 128 (6) ◽  
pp. 775-801
Author(s):  
Giulia Campostrini ◽  
Laura M. Windt ◽  
Berend J. van Meer ◽  
Milena Bellin ◽  
Christine L. Mummery

The ability of human pluripotent stem cells to form all cells of the body has provided many opportunities to study disease and produce cells that can be used for therapy in regenerative medicine. Even though beating cardiomyocytes were among the first cell types to be differentiated from human pluripotent stem cell, cardiac applications have advanced more slowly than those, for example, for the brain, eye, and pancreas. This is, in part, because simple 2-dimensional human pluripotent stem cell cardiomyocyte cultures appear to need crucial functional cues normally present in the 3-dimensional heart structure. Recent tissue engineering approaches combined with new insights into the dialogue between noncardiomyocytes and cardiomyocytes have addressed and provided solutions to issues such as cardiomyocyte immaturity and inability to recapitulate adult heart values for features like contraction force, electrophysiology, or metabolism. Three-dimensional bioengineered heart tissues are thus poised to contribute significantly to disease modeling, drug discovery, and safety pharmacology, as well as provide new modalities for heart repair. Here, we review the current status of 3-dimensional engineered heart tissues.


2018 ◽  
Vol 5 (2) ◽  
pp. 129
Author(s):  
Rezky Rizaldi ◽  
Arik Kurniawati ◽  
Cucun Very Angkoso

<p class="Abstrak">Perkembangan jual beli garmen secara <em>online</em>, dihadapkan pada kenyataan adanya 70% pengembalian produk oleh pembeli, akibat ketidaksesuaian antara harapan dan kenyataan model serta ukuran garmen. Kehadiran <em>virtual fitting room</em> secara <em>online</em>, diharapkan mampu mengurangi adanya pengembalian produk, memberikan pengaruh positif terhadap keistimewaan suatu produk, keinginan untuk membeli dan kepastian membeli secara <em>online</em>. <em>Virtual Fitting Room</em> ini bisa diimplementasikan pada toko <em>online</em> ataupun toko baju seperti biasa. Tahapan penelitian meliputi : penerapan teknologi <em>kinect</em> untuk mendapatkan data <em>skeleton</em> dari calon pembeli yang digunakan sebagai dasar untuk memberikan rekomendasi ukuran pakaian, selanjutnya perhitungan <em>euclidean distance</em> digunakan untuk menghitung ukuran punggung calon pembeli dan terakhir penerapan teknologi <em>augmented reality</em> untuk menampilkan pakaian <em>virtual</em> 3 dimensi yang melekat tepat di badan calon pembeli. Sistem rekomendasi ini mampu menampilkan calon pembeli dengan menggunakan baju virtual 3 dimensi yang sesuai dengan ukuran rekomendasi dari sistem (S,M,L, atau XL). Sistem ini juga memberikan fitur bagi calon pembeli untuk mencoba model pakaian lainnya. Sistem dapat memperlihatkan baju virtual 3 dimensi yang tetap melekat pada badan calon pembeli, ketika melakukan rotasi ke kanan 90<sup>0</sup>, ke kiri 90<sup>0</sup>, balik kanan 180<sup>0</sup> dan balik kiri 180<sup>0</sup>. Hasil uji coba sistem rekomendasi ukuran pakaian ini akan berjalan secara optimal jika pengaturan ketinggian <em>kinect</em> sebesar 55 cm dari tanah. Untuk ketinggian <em>kinect</em> 55cm, 65cm dan 75 cm dari tanah, sistem ini mampu menyajikan kesesuaian rekomendasi ukuran dibandingkan dengan ukuran asli dari calon pembeli sebesar 70%.</p><p class="Abstrak"> </p><p><strong>Kata kunci</strong>: <em>k</em><em>inect, augmented reality, euclidean distance</em><em>, virtual fitting room</em><strong></strong></p><p class="Judul2"> </p><p class="Judul2"><em>Abstract</em></p><p class="Judul2"><em>The development of online garment sale, faced with the fact that there is 70% return of product by the buyer, due to a mismatch between expectation and reality of model and garment size. The presence of virtual fitting room in the online store is expected to reduce the return of products, give a positive influence on the privilege of a product, the desire to buy and certainty to buy online. Virtual Fitting Room can be implemented in the online store or clothing store as usual. The research stages include the application of Kinect technology to obtain skeleton data from prospective buyers used as a basis for providing system recommendations, then euclidean distance calculation is used to calculate the size back potential buyers, and lastly application of augmented reality technology to display the right three-dimensional virtual clothing in potential buyer body. This recommendation system can present potential buyers by using 3-dimensional virtual shirts attached to their bodies by the recommended size of the system (S, M, L, or XL). This system also provides features for potential buyers to try other clothing models. The system can show a 3-dimensional virtual shirt that remains attached to the body of potential buyers, while rotating right 90<sup>0</sup>, left 90<sup>0</sup>, right turn 180<sup>0</sup> and left turn 180<sup>0</sup>. The test results of this clothing size recommendation system will run optimally if the Kinect height setting of 55 cm from the ground. For the Kinect height of 55cm, 65cm and 75cm from the ground, the system can present the recommended size with the original size of the potential buyer of 70%.</em></p><p class="Judul2"> </p><p><strong>Keywords</strong>: <em>kinect, augmented reality, euclidean distance, virtual fitting room</em></p>


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
O. Faroon ◽  
F. Al-Bagdadi ◽  
T. G. Snider ◽  
C. Titkemeyer

The lymphatic system is very important in the immunological activities of the body. Clinicians confirm the diagnosis of infectious diseases by palpating the involved cutaneous lymph node for changes in size, heat, and consistency. Clinical pathologists diagnose systemic diseases through biopsies of superficial lymph nodes. In many parts of the world the goat is considered as an important source of milk and meat products.The lymphatic system has been studied extensively. These studies lack precise information on the natural morphology of the lymph nodes and their vascular and cellular constituent. This is due to using improper technique for such studies. A few studies used the SEM, conducted by cutting the lymph node with a blade. The morphological data collected by this method are artificial and do not reflect the normal three dimensional surface of the examined area of the lymph node. SEM has been used to study the lymph vessels and lymph nodes of different animals. No information on the cutaneous lymph nodes of the goat has ever been collected using the scanning electron microscope.


Author(s):  
Neil Rowlands ◽  
Jeff Price ◽  
Michael Kersker ◽  
Seichi Suzuki ◽  
Steve Young ◽  
...  

Three-dimensional (3D) microstructure visualization on the electron microscope requires that the sample be tilted to different positions to collect a series of projections. This tilting should be performed rapidly for on-line stereo viewing and precisely for off-line tomographic reconstruction. Usually a projection series is collected using mechanical stage tilt alone. The stereo pairs must be viewed off-line and the 60 to 120 tomographic projections must be aligned with fiduciary markers or digital correlation methods. The delay in viewing stereo pairs and the alignment problems in tomographic reconstruction could be eliminated or improved by tilting the beam if such tilt could be accomplished without image translation.A microscope capable of beam tilt with simultaneous image shift to eliminate tilt-induced translation has been investigated for 3D imaging of thick (1 μm) biologic specimens. By tilting the beam above and through the specimen and bringing it back below the specimen, a brightfield image with a projection angle corresponding to the beam tilt angle can be recorded (Fig. 1a).


Author(s):  
Bharti Saraswat ◽  
Ashok Yadav ◽  
Krishna Kumar Maheshwari

Background- Electric burns and injuries are the result of electric current passing through the body. Temporary or permanent damage can occur to the skin, tissues, and major organs. Methods- This prospective study was carried out on patients admitted in burn unit of department of surgery M.G. Hospital associated with Dr. S.N. Medical College Jodhpur. Records of the patients admitted from January 2018 to December 2018 were studied. Bed head tickets of the patients evaluated in detail. Results- In our study out of 113 patients maximum no. of patients were in age group of 21-30 years 44 (38.94%) followed by age group <11 years in 21 (18.58%) patients and age group of > 60 years in only 3 (2.65%).39 (34.51%) patients were farmer and 15 (13.27%) were electrician in out of 113 total patients, while 37 (32.74%) were without any occupation. 65 (57.52%) cases of high voltage (HV) electrical injury and 48 (42.48%) cases were of low voltage (LV) electrical injury. Conclusion- Morbidity leading to permanent disabilities make the person physically dependent on others. It can be prevented by educating the people about the proper handling to electric circuits & devices. Proper communication among the electricians may help in lowering such accidents. Proper rehabilitation of the handicapped person & employment to the member of the affected family may reduce the social burden caused by such electricity concerned accidents.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3887
Author(s):  
Watcharapong Pudkon ◽  
Chavee Laomeephol ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont ◽  
Juthamas Ratanavaraporn

Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1–3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG). From the results, 2%wt SF-based (2SF) hydrogels showed suitable properties for extrusion, such as storage modulus, shear-thinning behavior and degree of structure recovery. The 4-layer box structure of all 2SF-based hydrogel formulations could be printed without structural collapse. In addition, the mechanical stability of printed structures after three-step post-treatment was investigated. The printed structure of 2SF/STS and 2SF/DMPG hydrogels exhibited high stability with high degree of structure recovery as 70.4% and 53.7%, respectively, compared to 2SF/self-gelled construct as 38.9%. The 2SF/STS and 2SF/DMPG hydrogels showed a great potential to use as material for 3D-printing due to its rheological properties, printability and structure stability.


Author(s):  
Xuhui Wang ◽  
Quan Zhang ◽  
Yanyi Chen ◽  
Shihao Liang

In recent years, 3D technology based on computer and internet has achieved high-speed development. People have realized direct and stereo observation of realistic world. Three-dimensional and visualized characteristics of the technology fit well with the teaching objective of college architecture specialized courses. Thus, 3D model has profound practical significance for its application in urban green space system and urban rural overall planning. With “urban-rural master plan” as experimental course, through design of “urban-rural master plan” multimedia teaching platform based on 3D technology and practice of the teaching platform in course teaching, this article has applied control experiment method and statistical method to make comparative analysis on the teaching effect difference of multimedia teaching platform based on 3D technology application in “urban-rural master plan” as experimental course so as to provide theoretical and data support for 3D technology application in “urban-rural master plan” and other college architecture major courses.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 774
Author(s):  
Max Langer ◽  
Thomas Speck ◽  
Olga Speck

Although both the petiole and lamina of foliage leaves have been thoroughly studied, the transition zone between them has often been overlooked. We aimed to identify objectively measurable morphological and anatomical criteria for a generally valid definition of the petiole–lamina transition zone by comparing foliage leaves with various body plans (monocotyledons vs. dicotyledons) and spatial arrangements of petiole and lamina (two-dimensional vs. three-dimensional configurations). Cross-sectional geometry and tissue arrangement of petioles and transition zones were investigated via serial thin-sections and µCT. The changes in the cross-sectional geometries from the petiole to the transition zone and the course of the vascular bundles in the transition zone apparently depend on the spatial arrangement, while the arrangement of the vascular bundles in the petioles depends on the body plan. We found an exponential acropetal increase in the cross-sectional area and axial and polar second moments of area to be the defining characteristic of all transition zones studied, regardless of body plan or spatial arrangement. In conclusion, a variety of terms is used in the literature for describing the region between petiole and lamina. We prefer the term “petiole–lamina transition zone” to underline its three-dimensional nature and the integration of multiple gradients of geometry, shape, and size.


Sign in / Sign up

Export Citation Format

Share Document