AVO detectability against tuning and stretching artifacts
The [Formula: see text] of hydrocarbon‐bearing sediments normally deviates from the [Formula: see text] trend of the background rocks. This causes anomalous reflection amplitude variation with offset (AVO) in the seismic data. The estimation of these AVOs is inevitably affected by wave propagation effects and inversion algorithm limitations, such as thin‐bed tuning and migration stretch. A logical point is to determine the minimum [Formula: see text] change required for an anomalous AVO to be detectable beyond the background tuning and stretching effects. Assuming Ricker wavelet for the seismic data, this study addresses this point by quantifying the errors in the intercept/slope estimate. Using these results, two detectability conditions are derived. Denoting the background [Formula: see text] by γ and its variation by δγ, the thin‐bed parameter (thickness/wavelength) by ξ, the maximum background intercept closest to the AVO by |A|max, and the thin‐bed intercept value by |A|thin the two conditions are [Formula: see text] [Formula: see text] for detectability against stretching and tuning plus stretching, respectively. Tests on synthetic data confirm their validity and accuracy. These conditions provide a quantitative guideline for evaluating AVO applicability and effectiveness in seismic exploration. They can eliminate some of the subjectivity when interpreting AVO results in different attribute spaces. To improve AVO detectability, a procedure is suggested for removing the tuning and stretching effects.