3-D high‐resolution reflection seismic imaging of unconsolidated glacial and glaciolacustrine sediments: processing and interpretation

Geophysics ◽  
2000 ◽  
Vol 65 (1) ◽  
pp. 18-34 ◽  
Author(s):  
Frank Büker ◽  
Alan G. Green ◽  
Heinrich Horstmeyer

Shallow 3-D seismic reflection techniques have been used to map glacial deposits in a Swiss mountain valley. A dense distribution of source and receiver positions resulted in a small subsurface sampling of 1.5 m × 1.5 m and a high fold of >40. Common processing operations that included pseudotrue amplitude scaling, deconvolution, and band‐pass filtering successfully enhanced shallow reflections relative to source‐generated noise. Careful top muting helped avoid erroneous stacking of direct and guided waves. Azimuth‐dependent velocity analyses proved to be unnecessary. Three‐dimensional (3-D) migration of the stacked data yielded the final high‐resolution images of the shallow subsurface (15–170 m). Because most reflections and diffractions were migrated to their correct subsurface locations, confident interpretations of 3-D structures were possible. Time slices and cross‐sections along arbitrary directions proved to be powerful analysis tools. Even small‐scale features (<20 m wide), such as subglacial channels and troughs, could be mapped. Five major lithologic units separated by four principal reflecting boundaries were distinguished on the basis of their characteristic seismic facies. The principal reflecting boundaries were semiautomatically tracked through the 3-D data volume. Borehole information allowed the uppermost boundary at 15–27 m to be identified as the top of a 68–80-m-thick sequence of basal and reworked tills characterized by high‐amplitude discontinuous to quasi‐continuous reflections. Low reflectivity of seismic units above and below the till units was associated with finely layered or massive glaciolacustrine clay/silt deposited during and after two principal phases of glaciation (Würm at 28 000 to 10 000 and Riss at 200 000 to 100 000 years before the present). Top of Tertiary Molasse basement was delineated by prominent east‐dipping reflections at variable depths of 85–170 m.

2012 ◽  
Vol 91 (3) ◽  
pp. 341-355 ◽  
Author(s):  
B.F. Paap ◽  
C.W. Dubelaar ◽  
J.L. Gunnink ◽  
A.P. Oost

AbstractModelling of the shallow subsurface of the Dutch Wadden Sea is merely based on lithological information extracted from a limited amount of core samples. In order to improve the subsurface model and to provide a better basis for engineering purposes, seismic data have recently been acquired, processed and interpreted. This study focuses on the interpretation of seismic data in a pilot area in the southwestern part of the Dutch Wadden Sea near the Afsluitdijk. In order to acquire a maximum detail of subsurface information in a time-efficient way, multiple types of seismic systems were deployed simultaneously in a ‘one-sweep-survey’, providing information over depth ranges up to 60 m subsurface depth. Data from three seismic systems are presented; a chirp system, a boomer and sparker source in combination with hydrophone streamers. Geological interpretation of the seismic data was made by identifying seismic facies units and subsequently correlating them to geological cross-sections, running parallel to the Afsluitdijk. Geological cross-sections were derived from the existing geological and hydrogeological model and from relatively densely spaced borehole information. Six key reflectors were identified on the seismic data along the Dutch Afsluitdijk that make up four seismic facies units. Results of seismic profiles show good recognition of internal structures in especially Holocene sediments. A clay plug and a shallowing of a channel at the eastern side of the pilot area were interpreted as channel infills resulting from the rather sudden dominance by newer tidal channels to the west, probably coinciding with the opening of the Marsdiep channel. The channel wall deposits observed were interpreted as a turning of the drainage channel after closure of the IJsselmeer. Strong reflections of deeper levels (>15 m below Dutch vertical datum, i.e. N.A.P.) were interpreted as clay/sand interfaces in the Middle-Pleistocene Urk Formation and were more continuous than previously thought. It is concluded that high resolution seismics add valuable information yielding improved understanding of the sedimentary structure of the shallow subsurface, which in turn can be useful for near future engineering works along the Afsluitdijk.


2021 ◽  
Vol 11 (11) ◽  
pp. 5156
Author(s):  
Abd Al-Salam Al-Masgari ◽  
Mohamed Elsaadany ◽  
Numair A. Siddiqui ◽  
Abdul Halim Abdul Latiff ◽  
Azli Abu Bakar ◽  
...  

This study identified the Pleistocene depositional succession of the group (A) (marine, estuarine, and fluvial depositional systems) of the Melor and Inas fields in the central Malay Basin from the seafloor to approximately −507 ms (522 m). During the last few years, hydrocarbon exploration in Malay Basin has moved to focus on stratigraphic traps, specifically those that existed with channel sands. These traps motivate carrying out this research to image and locate these kinds of traps. It can be difficult to determine if closely spaced-out channels and channel belts exist within several seismic sequences in map-view with proper seismic sequence geomorphic elements and stratigraphic surfaces seismic cross lines, or probably reinforce the auto-cyclic aggregational stacking of the avulsing rivers precisely. This analysis overcomes this challenge by combining well-log with three-dimensional (3D) seismic data to resolve the deposition stratigraphic discontinuities’ considerable resolution. Three-dimensional (3D) seismic volume and high-resolution two-dimensional (2D) seismic sections with several wells were utilized. A high-resolution seismic sequence stratigraphy framework of three main seismic sequences (3rd order), four Parasequences sets (4th order), and seven Parasequences (5th order) have been established. The time slice images at consecutive two-way times display single meandering channels ranging in width from 170 to 900 m. Moreover, other geomorphological elements have been perfectly imaged, elements such as interfluves, incised valleys, chute cutoff, point bars, and extinction surfaces, providing proof of rapid growth and transformation of deposits. The high-resolution 2D sections with Cosine of Phase seismic attributes have facilitated identifying the reflection terminations against the stratigraphic amplitude. Several continuous and discontinuous channels, fluvial point bars, and marine sediments through the sequence stratigraphic framework have been addressed. The whole series reveals that almost all fluvial systems lay in the valleys at each depositional sequence’s bottom bars. The degradational stacking patterns are characterized by the fluvial channels with no evidence of fluvial aggradation. Moreover, the aggradation stage is restricted to marine sedimentation incursions. The 3D description of these deposits permits distinguishing seismic facies of the abandoned mud channel and the sand point bar deposits. The continuous meandering channel, which is filled by muddy deposits, may function as horizontal muddy barriers or baffles that might isolate the reservoir body into separate storage containers. The 3rd, 4th, and 5th orders of the seismic sequences were established for the studied succession. The essential geomorphological elements have been imaged utilizing several seismic attributes.


2009 ◽  
Vol 24 (1) ◽  
pp. 87-103 ◽  
Author(s):  
S-G. Park ◽  
Dong-Kyou Lee

Abstract The performance of a radar network for retrieving high-resolution wind fields over South Korea is examined. The network consists of a total of 18 operational radars. All of the radars possess the Doppler capability and carry out plan position indicator (PPI) volume scans comprising 6–15 elevation steps at every 6 or 10 min. An examination of the coverage of the radar network reveals that the radar network allows the retrieval of three-dimensional high-resolution wind fields over the entire area of the southern Korean Peninsula as well as nearby oceans above a height of approximately 3 km. After the quality control procedures of the radar measurements, the high-resolution wind fields (a few kilometers) are extracted using multiple-Doppler wind synthesis in the Custom Editing and Display of Reduced Information in Cartesian Space (CEDRIC) package developed by NCAR. The radar-retrieved winds are evaluated using the following two rain events: 1) Typhoon Ewiniar in 2006, which resulted in strong winds and heavy rainfall over the entire southern Korean Peninsula, and 2) a well-developed hook echo with a relatively small-scale diameter of about 30 km. The wind fields retrieved from the radar network exhibit counterclockwise rotation around the typhoon center and a general structure around a hook echo such as a cyclonically rotating updraft (i.e., mesocyclone). Comparisons with the wind measurements from four UHF wind profilers for the typhoon case reveal that the u- and υ-wind components retrieved from the radar network deviate by standard deviations of 3.6 and 4.5 m s−1 over ranges from −30 to 20 m s−1 and from 0 to 40 m s−1, respectively. Therefore, it is concluded that the operational radar network has the potential to provide three-dimensional high-resolution wind fields within the mesoscale precipitation systems over almost the entire area of the southern Korean Peninsula.


2019 ◽  
Vol 56 (6) ◽  
pp. 885-892 ◽  
Author(s):  
Louis King ◽  
Abdelmalek Bouazza ◽  
Anton Maksimenko ◽  
Will P. Gates ◽  
Stephen Dubsky

The measurement of displacement fields by nondestructive imaging techniques opens up the potential to study the pre-failure mechanisms of a wide range of geotechnical problems within physical models. With the advancement of imaging technologies, it has become possible to achieve high-resolution three-dimensional computed tomography volumes of relatively large samples, which may have previously resulted in excessively long scan times or significant imaging artefacts. Imaging of small-scale model piled embankments (142 mm diameter) comprising sand was undertaken using the imaging and medical beamline at the Australian Synchrotron. The monochromatic X-ray beam produced high-resolution reconstructed volumes with a fine texture due to the size and mineralogy of the sand grains as well as the phase contrast enhancement achieved by the monochromatic X-ray beam. The reconstructed volumes were well suited to the application of digital volume correlation, which utilizes cross-correlation techniques to estimate three-dimensional full-field displacement vectors. The output provides insight into the strain localizations that develop within piled embankments and an example of how advanced imaging techniques can be utilized to study the kinematics of physical models.


2015 ◽  
Vol 8 (1) ◽  
pp. 81-95 ◽  
Author(s):  
M. Kaufmann ◽  
J. Blank ◽  
T. Guggenmoser ◽  
J. Ungermann ◽  
A. Engel ◽  
...  

Abstract. The three-dimensional quantification of small-scale processes in the upper troposphere and lower stratosphere is one of the challenges of current atmospheric research and requires the development of new measurement strategies. This work presents the first results from the newly developed Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) obtained during the ESSenCe (ESa Sounder Campaign) and TACTS/ESMVal (TACTS: Transport and composition in the upper troposphere/lowermost stratosphere, ESMVal: Earth System Model Validation) aircraft campaigns. The focus of this work is on the so-called dynamics-mode data characterized by a medium-spectral and a very-high-spatial resolution. The retrieval strategy for the derivation of two- and three-dimensional constituent fields in the upper troposphere and lower stratosphere is presented. Uncertainties of the main retrieval targets (temperature, O3, HNO3, and CFC-12) and their spatial resolution are discussed. During ESSenCe, high-resolution two-dimensional cross-sections have been obtained. Comparisons to collocated remote-sensing and in situ data indicate a good agreement between the data sets. During TACTS/ESMVal, a tomographic flight pattern to sense an intrusion of stratospheric air deep into the troposphere was performed. It was possible to reconstruct this filament at an unprecedented spatial resolution of better than 500 m vertically and 20 × 20 km horizontally.


2020 ◽  
Vol 27 (1-2) ◽  
Author(s):  
Ondřej Bábek ◽  
Zuzana Lenďáková ◽  
Tamás Tóth ◽  
Daniel Šimíček ◽  
Ondřej Koukal

We measured shallow reflection seismic profiles across the assumed faults in the Late Cenozoic (Pliocene – Holocene) Upper Morava Basin (UMB). The faults in the UMB are indicated by horst-and-graben morphology, differential thickness of Pliocene and Quaternary siliciclastic sediments, considerable gravity gradients a present-day seismicity. Four seismic lines, 380 to 860 m long (fixed geophone spread) were designed to cross the assumed faults at three sites, Mezice, Drahlov and Výšovice. The data were acquired by 24-channel ABEM Terraloc Mk-8 seismic system with PEG-40 accelerated weight drop source and processed by Sandmaier ReflexW and Halliburton Landmark ProMax® seismic processing software. The processing included application of filters (DC shift, scaled windowgain, bandpass frequency and muting), stacking using normal moveout constant velocity stack, additional application of subtrack-mean (dewow) filter, topographic correction and low velocity layer static correction. Distinct reflectors were detected up to 400 ms TWT, which corresponds to maximum depth of 280 and 350 m at 1400 and 1750 km.s-1 velocities, respectively. The observed reflection patterns were classified into three seismic facies, which were interpreted as crystalline rocks (Brunovistulicum) and/or well consolidated Paleozoic sedimentary rocks (SF1), unconsolidated Quaternary siliciclastic sediments (SF2) and semi-consolidated Neogene clays (SF3) based on the cores drilled in their close vicinity. Distinct faults were observed at the Drahlov and Výšovice 2 profile, which coincided with the observed topographic steps between the horsts and grabens. Presence of the fault at the Drahlov profile separating the Hněvotín Horst from the Lutín Graben was demonstrated by independent electrical resistivity tomography profile. On the other hand, another topographic step at the Mezice profile, between the Hněvotín Horst and Olomouc Graben, does not correspond to any seismic indication of a fault. The reflection seismic proved to be useful and relatively low-cost method to visualize the shallow subsurface geology in the Upper Morava Basin.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8190
Author(s):  
Pauli Putkiranta ◽  
Matti Kurkela ◽  
Matias Ingman ◽  
Aino Keitaanniemi ◽  
Aimad El Issaoui ◽  
...  

The deterioration of road conditions and increasing repair deficits pose challenges for the maintenance of reliable road infrastructure, and thus threaten, for example, safety and the fluent flow of traffic. Improved and more efficient procedures for maintenance are required, and these require improved knowledge of road conditions, i.e., improved data. Three-dimensional mapping presents possibilities for large-scale collection of data on road surfaces and automatic evaluation of maintenance needs. However, the development and, specifically, evaluation of large-scale mobile methods requires reliable references. To evaluate possibilities for close-range, static, high-resolution, three-dimensional measurement of road surfaces for reference use, three measurement methods and five instrumentations are investigated: terrestrial laser scanning (TLS, Leica RTC360), photogrammetry using high-resolution professional-grade cameras (Nikon D800 and D810E), photogrammetry using an industrial camera (FLIR Grasshopper GS3-U3-120S6C-C), and structured-light handheld scanners Artec Leo and Faro Freestyle. High-resolution photogrammetry is established as reference based on laboratory measurements and point density. The instrumentations are compared against one another using cross-sections, point–point distances, and ability to obtain key metrics of defects, and a qualitative assessment of the processing procedures for each is carried out. It is found that photogrammetric models provide the highest resolutions (10–50 million points per m2) and photogrammetric and TLS approaches perform robustly in precision with consistent sub-millimeter offsets relative to one another, while handheld scanners perform relatively inconsistently. A discussion on the practical implications of using each of the examined instrumentations is presented.


1995 ◽  
Vol 13 (7) ◽  
pp. 745-756 ◽  
Author(s):  
G. Günther ◽  
M. Dameris

Abstract. The dynamics of the polar vortex in winter and spring play an important role in explaining observed low ozone values. A quantification of physical and chemical processes is necessary to obtain information about natural and anthropogenic causes of fluctuations of ozone. This paper aims to contribute to answering the question of how permeable the polar vortex is. The transport into and out of the vortex ("degree of isolation") remains the subject of considerable debate. Based on the results of a three-dimensional mechanistic model of the middle atmosphere, the possibility of exchange of air masses across the polar vortex edge is investigated. Additionally the horizontal and vertical structure of the polar vortex is examined. The model simulation used for this study is related to the major stratospheric warming observed in February 1989. The model results show fair agreement with observed features of the major warming of 1989. Complex structures of the simulated polar vortex are illustrated by horizontal and vertical cross sections of potential vorticity and inert tracer. A three-dimensional view of the polar vortex enables a description of the vortex as a whole. During the simulation two vortices and an anticyclone, grouped together in a very stable tripolar structure, and a weaker, more amorphous anticyclone are formed. This leads to the generation of small-scale features. The results also indicate that the permeability of the vortex edges is low because the interior of the vortices remain isolated during the simulation.


2014 ◽  
Vol 7 (4) ◽  
pp. 4229-4274 ◽  
Author(s):  
M. Kaufmann ◽  
J. Blank ◽  
T. Guggenmoser ◽  
J. Ungermann ◽  
A. Engel ◽  
...  

Abstract. The three-dimensional quantification of small scale processes in the upper troposphere and lower stratosphere is one of the challenges of current atmospheric research and requires the development of new measurement strategies. This work presents first results from the newly developed Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) obtained during the ESSenCe and TACTS/ESMVal aircraft campaigns. The focus of this work is on the so-called dynamics mode data characterized by a medium spectral and a very high spatial resolution. The retrieval strategy for the derivation of two- and three-dimensional constituent fields in the upper troposphere and lower stratosphere is presented. Uncertainties of the main retrieval targets (temperature, O3, HNO3 and CFC-12) and their spatial resolution are discussed. During ESSenCe, high resolution two-dimensional cross-sections have been obtained. Comparisons to collocated remote-sensing and in-situ data indicate a good agreement between the data sets. During TACTS/ESMVal a tomographic flight pattern to sense an intrusion of stratospheric air deep into the troposphere has been performed. This filament could be reconstructed with an unprecedented spatial resolution of better than 500 m vertically and 20 km × 20 km horizontally.


Sign in / Sign up

Export Citation Format

Share Document