3D Fault Structure Inferred from a Refined Aftershock Catalog for the 2015 Gorkha Earthquake in Nepal

2019 ◽  
Vol 110 (1) ◽  
pp. 26-37 ◽  
Author(s):  
Masumi Yamada ◽  
Thakur Kandel ◽  
Koji Tamaribuchi ◽  
Abhijit Ghosh

ABSTRACT In this article, we created a well-resolved aftershock catalog for the 2015 Gorkha earthquake in Nepal by processing 11 months of continuous data using an automatic onset and hypocenter determination procedure. Aftershocks were detected by the NAMASTE temporary seismic network that is densely distributed covering the rupture area and became fully operational about 50 days after the mainshock. The catalog was refined using a joint hypocenter determination technique and an optimal 1D velocity model with station correction factors determined simultaneously. We found around 15,000 aftershocks with the magnitude of completeness of ML 2. Our catalog shows that there are two large aftershock clusters along the north side of the Gorkha–Pokhara anticlinorium and smaller shallow aftershock clusters in the south. The patterns of aftershock distribution in the northern and southern clusters reflect the complex geometry of the Main Himalayan thrust. The aftershocks are located both on the slip surface and through the entire hanging wall. The 1D velocity structure obtained from this study is almost constant at a P-wave velocity (VP) of 6.0  km/s for a depth of 0–20 km, similar to VP of the shallow continental crust.

1991 ◽  
Vol 81 (2) ◽  
pp. 508-523
Author(s):  
Jim Mori

Abstract Event record sections, which are constructed by plotting seismograms from many closely spaced earthquakes recorded on a few stations, show multiple free-surface reflections (PP, PPP, PPPP) of the P wave in the Imperial Valley, California. The relative timing of these arrivals is used to estimate the strength of the P-wave velocity gradient within the upper 5 km of the sediment layer. Consistent with previous studies, a velocity model with a value of 1.8 km/sec at the surface increasing linearly to 5.8 km/sec at a depth of 5.5 km fits the data well. The relative amplitudes of the P and PP arrivals are used to estimate the source depth for the aftershock distributions of the Elmore Ranch and Superstition Hills main shocks. Although the depth determination has large uncertainties, both the Elmore Ranch and Superstition Hills aftershock sequences appear to have similar depth distribution in the range of 4 to 10 km.


Geophysics ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. R45-R56 ◽  
Author(s):  
Lars Nielsen ◽  
Hans Thybo ◽  
Martin Glendrup

Seismic wide-angle data were recorded to more than 300-km offset from powerful airgun sources during the MONA LISA experiments in 1993 and 1995 to determine the seismic-velocity structure of the crust and uppermost mantle along three lines in the southeastern North Sea with a total length of 850 km. We use the first arrivals observed out to an offset of 90 km to obtain high-resolution models of the velocity structure of the sedimentary layers and the upper part of the crystalline crust. Seismic tomographic traveltime inversion reveals 2–8-km-thick Paleozoic sedimentary sequences with P-wave velocities of 4.5–5.2 km/s. These sedimentary rocks are situated below a Mesozoic-Cenozoic sequence with variable thickness: ∼2–3 km on the basement highs, ∼2–4 km in the Horn Graben and the North German Basin, and ∼6–7 km in the Central Graben. The thicknesses of the Paleozoic sedimentary sequences are ∼3–5 km in the Central Graben, more than 4 km in the Horn Graben, up to ∼4 km on the basement highs, and up to 8 km in the North German Basin. The Paleozoic strata are clearly separated from the shallower and younger sequences with velocities of ∼1.8–3.8 km/s and the deeper crystalline crust with velocities of more than 5.8–6.0 km/s in the tomographic P-wave velocity model. Resolution tests show that the existence of the Paleozoic sediments is well constrained by the data. Hence, our wide-angle seismic models document the presence of Paleozoic sediments throughout the southeastern North Sea, both in the graben structures and in deep basins on the basement highs.


Author(s):  
Glenn Thackray ◽  
Mark Zellman ◽  
Jason Altekruse ◽  
Bruno Protti ◽  
Harrison Colandera

Preliminary results from seismic data collected at two sites on the Teton fault reveal shallow sub-surface fault structure and a basis for evaluating the post-glacial faulting record in greater detail. These new data include high-resolution shallow 2D seismic refraction and Interferometric Multi-Channel Analysis of Surface Waves (IMASW) (O’Connell and Turner 2010) depth-averaged shear wave velocity (Vs). The Teton fault, a down-to-the east normal fault, is expressed as a distinct topographic escarpment along the base of the eastern front of the Teton Range in Wyoming. The average fault scarp height cut into deglacial surfaces in several similar valleys and an assumed 14,000 yr BP deglaciation indicates an average postglacial offset rate of 0.82 m/ka (Thackray and Staley, in review). Because the fault is located almost entirely within Grand Teton National Park (GTNP), and in terrain that is remote and difficult to access, very few subsurface studies have been used to evaluate the fault. As a result, many uncertainties exist in the present characterization of along-strike slip rate, down-dip geometry, and rupture history, among other parameters. Additionally, questions remain about the fault dip at depth. Shallow seismic data were collected at two locations on the Teton fault scarp to (1) use a non-destructive, highly portable and cost-effective data collection system to image and characterize the Teton fault, (2) use the data to estimate vertical offsets of faulted bedrock and sediment, and (3) estimate fault dip in the shallow subsurface. Vs data were also collected at three GTNP facility structures to provide measured 30 m depth-averaged Vs (Vs30) for each site. Seismic data were collected using highly portable equipment packed into each site on foot. The system utilizes a sensor line 92 m long that includes 24 geophones (channels) at 4 m intervals. At both the Taggart Lake and String Lake sites, P-wave refraction data were collected spanning the fault scarp and perpendicular to local fault strike, as well as IMASW Vs seismic lines positioned on the hanging wall to provide Vs vs. Depth profiles crossing and perpendicular to the refraction survey lines. The Taggart Lake and String Lake 2D P-wave refraction profile and IMASW Vs plots reveal buried velocity structure that is vertically offset by the Teton fault. At Taggart Lake, we interpret the velocity horizon to be the top of dense glacial sediment (possibly compacted till), which is overlain by younger, slower, sediments. This surface is offset ~13 m (down-to-the-east) across the Teton fault. The vertical offset is in agreement with the measured height of the corresponding topographic scarp (~12 - 15 m). Geomorphic analysis of EarthScope (2008) LiDAR reveals small terraces, slope inflections and an abandoned channel on the footwall side of the scarp. At String Lake, the shallow buried velocity structure is inferred as unconsolidated alluvium (till, colluvium, alluvium); this relatively low velocity zone (


2021 ◽  
Vol 873 (1) ◽  
pp. 012098
Author(s):  
P P Rahsetyo ◽  
D P Sahara ◽  
A D Nugraha ◽  
D K Syahbana ◽  
Zulfakriza ◽  
...  

Abstract Agung is one of active volcanoes in Indonesia, located on island of Bali. Since 1963, Agung has not had significant activity, until in September 2017 the volcano was active again which was marked by increased seismic activity and eruptions in November 2017. Therefore, to analyze the dynamics and processes of active volcanic eruptions requires an understanding of the structure of the volcano, especially the position of the magma reservoir and its path. The depiction of the structure of this volcano can be analyzed by determining the location of the earthquake due to volcanic activity, especially Volcano-Tectonic (VT) earthquake. In this study, we determined the location of the hypocenter around the Agung using the non-linear location method. VT earthquakes have similar characteristics to tectonic earthquakes so this method can be used to determine the initial hypocenter. The data used in this study came from 8 PVMBG seismographs from October to December 2017. We manually picking arrival time of P- and S-waves from the 3948 VT events found. Pair of P and S wave phases with 18741 P-wave phases and 17237 S-wave phases, plotted in a wadati diagram resulting in a vp/vs ratio of 1.7117. We use 1D velocity models derived from Koulakov with the assumption that the geology of the study area is not much different from the volcanoes in Central Java. The resulting hypocenter distribution shows a very random location and has uncertain X, Y, and Z directions from a range of 0 to 91 km. This study limits this uncertainty to 5 km resulting in a more reliable earthquakes distribution of 3050 events. The results indicate 2 clustered events, a swarm of VT events that occur every month at a depth of 8 to 15 km and there are 2 paths that lead to the top of Agung and SW of that swarm. These preliminary results will be used to update 1D velocity model and relocate the events beneath Agung region for further studies.


Author(s):  
Maximilien Lehujeur ◽  
Sébastien Chevrot ◽  
Antonio Villaseñor ◽  
Emmanuel Masini ◽  
Nicolas Saspiturry ◽  
...  

We present a 3-D shear wave velocity model of the Mauleon and Arzacq basins from the surface down to 10~km depth. This model is obtained by inverting phase velocity maps for periods from 2 to 9~s measured on coherent surface wavefronts extracted from ambient seismic noise by matched filtering. This new model, which is found in good agreement with local earthquake tomography, reveals the architecture of the Mauleon and Arzacq basins which were poorly imaged by conventional reflection seismic data. Combining these new tomographic images with surface and subsurface geological information allows us to trace major orogenic structures from the basement to the surface. In the basin, the models are successfully imaging first-order folds and thrusts at kilometric scale. The velocity structure within the basement and its geometrical relationship with the base of inverted rift basins supports a progressive northward exhumation of deep crustal and mantle rocks in the hanging wall of north-vergent Pyrenean thrusts. Our tomographic models image in 3-D orogen-perpendicular structures responsible for crustal segmentation as the Saison and Barlanes transfer zones. We propose that these steep structures consist in tear faults that accommodate the deepening of the Mauleon basin basement from west to east. To the west, this basement made of former hyper-extended rift domains (including mantle rocks) is anomalously sampled within the hanging-wall of north-directed orogenic thrusts, explaining its shallow attitude and its best preservation in comparison to the eastern segment of the study area. Eastward, the vertical shift of the basement makes that the former Mauleon basin hyper-extended rift basement remained in a footwall situation in respect of orogenic thrust and was underthrust. The comparison of the tomographic models obtained with surface wave tomography and local earthquake tomography shows that each approach has its own advantages and shortcomings but also that they are very complementary in nature, which would suggest to combine them in joint inversions to further improve passive imaging of the shallow crust and sedimentary basins.


1993 ◽  
Vol 30 (12) ◽  
pp. 2389-2403 ◽  
Author(s):  
D. M. O'Leary ◽  
R. M. Clowes ◽  
R. M. Ellis

We applied an iterative combination of two-dimensional traveltime inversion and amplitude forward modelling to seismic refraction data along a 350 km along-strike profile in the Coast Belt of the southern Canadian Cordillera to determine crust and upper mantle P-wave velocity structure. The crustal model features a thin (0.5–3.0 km) near-surface layer with an average velocity of 4.4 km/s, and upper-, middle-, and lower-crustal strata which are each approximately 10 km thick and have velocities ranging from 6.2 to 6.7 km/s. The Moho appears as a 2 km thick transitional layer with an average depth of 35 km and overlies an upper mantle with a poorly constrained velocity of over 8 km/s. Other interpretations indicate that this profile lies within a collision zone between the Insular superterrane and the ancient North American margin and propose two collision-zone models: (i) crustal delamination, whereby the Insular superterrane was displaced along east-vergent faults over the terranes below; and (ii) crustal wedging, in which interfingering of Insular rocks occurs throughout the crust. The latter model involves thick layers of Insular material beneath the Coast Belt profile, but crustal velocities indicate predominantly non-Insular material, thereby favoring the crustal delamination model. Comparisons of the velocity model with data from the proximate reflection lines show that the top of the Moho transition zone corresponds with the reflection Moho. Comparisons with other studies suggest that likely sources for intracrustal wide-angle reflections observed in the refraction data are structural features, lithological contrasts, and transition zones surrounding a region of layered porosity in the crust.


2021 ◽  
Vol 13 (13) ◽  
pp. 2449
Author(s):  
Huiyan Shi ◽  
Tonglin Li ◽  
Rui Sun ◽  
Gongbo Zhang ◽  
Rongzhe Zhang ◽  
...  

In this paper, we present a high resolution 3-D tomographic model of the upper mantle obtained from a large number of teleseismic travel time data from the ISC in the central Philippines. There are 2921 teleseismic events and 32,224 useful relative travel time residuals picked to compute the velocity structure in the upper mantle, which was recorded by 87 receivers and satisfied the requirements of teleseismic tomography. Crustal correction was conducted to these data before inversion. The fast-marching method (FMM) and a subspace method were adopted in the forward step and inversion step, respectively. The present tomographic model clearly images steeply subducting high velocity anomalies along the Manila trench in the South China Sea (SCS), which reveals a gradual changing of the subduction angle and a gradual shallowing of the subduction depth from the north to the south. It is speculated that the change in its subduction depth and angle indicates the cessation of the SCS spreading from the north to the south, which also implies that the northern part of the SCS opened earlier than the southern part. Subduction of the Philippine Sea (PS) plate is exhibited between 14° N and 9° N, with its subduction direction changing from westward to eastward near 13° N. In the range of 11° N–9° N, the subduction of the Sulu Sea (SS) lies on the west side of PS plate. It is notable that obvious high velocity anomalies are imaged in the mantle transition zone (MTZ) between 14° N and 9° N, which are identified as the proto-SCS (PSCS) slabs and paleo-Pacific (PP) plate. It extends the location of the paleo-suture of PSCS-PP eastward from Borneo to the Philippines, which should be considered in studying the mechanism of the SCS and the tectonic evolution in SE Asia.


2021 ◽  
Author(s):  
Gregor Rajh ◽  
Josip Stipčević ◽  
Mladen Živčić ◽  
Marijan Herak ◽  
Andrej Gosar

<p>The investigated area of the NW Dinarides is bordered by the Adriatic foreland, the Southern Alps, and the Pannonian basin at the NE corner of the Adriatic Sea. Its complex crustal structure is the result of interactions among different tectonic units. Despite numerous seismic studies taking place in this region, there still exists a need for a detailed, smaller scale study focusing mainly on the brittle part of the Earth's crust. Therefore, we decided to investigate the velocity structure of the crust using concepts of local earthquake tomography (LET) and minimum 1-D velocity model. Here, we present the results of the 1-D velocity modeling and the catalogue of the relocated seismicity. A minimum 1-D velocity model is computed by simultaneous inversion for hypocentral and velocity parameters together with seismic station corrections and represents the best fit to the observed arrival times.</p><p>We used 15,579 routinely picked P wave arrival times from 631 well-located earthquakes that occurred in Slovenia and in its immediate surroundings (mainly NW Croatia). Various initial 1-D velocity models, differing in velocity and layering, were used as input for velocity inversion in the VELEST program. We also varied several inversion parameters during the inversion runs. Most of the computed 1-D velocity models converged to a stable solution in the depth range between 0 and 25 km. We evaluated the inversion results using rigorous testing procedures and selected two best performing velocity models. Each of these models will be used independently as the initial model in the simultaneous hypocenter-velocity inversion for a 3-D velocity structure in LET. Based on the results of the 1-D velocity modeling, seismicity distribution, and tectonics, we divided the study area into three parts, redefined the earthquake-station geometry, and performed the inversion for each part separately. This way, we gained a better insight into the shallow velocity structure of each subregion and were able to demonstrate the differences among them.</p><p>Besides general structural implications and a potential to improve the results of LET, the new 1-D velocity models along with station corrections can also be used in fast routine earthquake location and to detect systematic travel time errors in seismological bulletins, as already shown by some studies using similar methods.</p>


2015 ◽  
Vol 58 (9) ◽  
pp. 1577-1591 ◽  
Author(s):  
YongHong Duan ◽  
BaoJin Liu ◽  
JinRen Zhao ◽  
BaoFeng Liu ◽  
ChengKe Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document