Identification of calibration errors in helicopter electromagnetic (HEM) data through transform to the altitude-corrected phase-amplitude domain

Geophysics ◽  
2006 ◽  
Vol 71 (2) ◽  
pp. G27-G34 ◽  
Author(s):  
Yusen Ley-Cooper ◽  
James Macnae ◽  
Terry Robb ◽  
Julian Vrbancich

We investigate the properties of EM signals in several different response-parameter domains to identify calibration errors in helicopter electromagnetic (HEM) data. In particular, we define a dimensionless response parameter α, derived from frequency-domain data, that is numerically identical to the historic wire-loop response parameter, and is closely related to the thin-sheet and half-space response parameters. The arctangent of α is the phase ϕ of the secondary field. We further define a dimensionless amplitude response parameter β, calculated as the ratio between inductive limits estimated from the data and from system geometry. The inductive limit calculated from geometry provides an initial altitude correction to the data amplitudes. Additional data corrections further correct phase effects and altimeter variations. The amplitude and phase errors in calibration become independent differences between the data and the fitted model in the ϕβ domain. This investigation was undertaken in the response-parameter domain rather than in the data domain, allowing the analysis to be independent of absolute values of conductivity and system frequencies. Statistical analysis in the ϕβ domain of recently acquired data suggests that amplitude calibration errors in HEM data may cause fitted models to have systematic depth errors of 1 to 2 m for near-surface conductors; variable altitude measurement errors are about 1.5 m over seawater.

Geophysics ◽  
1992 ◽  
Vol 57 (9) ◽  
pp. 1127-1137 ◽  
Author(s):  
Andreas Hördt ◽  
Vladimir L. Druskin ◽  
Leonid A. Knizhnerman ◽  
Kurt‐Martin Strack

The interpretation of long‐offset transient electromagnetic (LOTEM) data is usually based on layered earth models. Effects of lateral conductivity variations are commonly explained qualitatively, because three‐dimensional (3-D) numerical modeling is not readily available for complex geology. One of the first quantitative 3-D interpretations of LOTEM data is carried out using measurements from the Münsterland basin in northern Germany. In this survey area, four data sets show effects of lateral variations including a sign reversal in the measured voltage curve at one site. This sign reversal is a clear indicator of two‐dimensional (2-D) or 3-D conductivity structure, and can be caused by current channeling in a near‐surface conductive body. Our interpretation strategy involves three different 3-D forward modeling programs. A thin‐sheet integral equation modeling routine used with inversion gives a first guess about the location and strike of the anomaly. A volume integral equation program allows models that may be considered possible geological explanations for the conductivity anomaly. A new finite‐difference algorithm permits modeling of much more complex conductivity structures for simulating a realistic geological situation. The final model has the zone of anomalous conductivity aligned below a creek system at the surface. Since the creeks flow along weak zones in this area, the interpretation seems geologically reasonable. The interpreted model also yields a good fit to the data.


Geophysics ◽  
1978 ◽  
Vol 43 (3) ◽  
pp. 563-575 ◽  
Author(s):  
H. O. Seigel ◽  
D. H. Pitcher

The Tridem vertical coplanar airborne electromagnetic system provides simultaneous in‐phase and quadrature information at frequencies of 500, 2000 and 8000 Hz. The system can map a broad range of earth conductors of simple geometry and provide quantitative estimates of their conductivities and dimensions. Computer programs have been developed to automatically interpret the six channels of Tridem data, plus the output of an accurate radar altimeter, to determine the depth of burial, conductivity and thickness of a near‐surface, flat‐lying conducting horizon. In limiting cases, the interpretation provides the conductance (conductivity‐thickness product) of a thin sheet (ranging from 100 mmhos to 100 mhos) or the conductivity of a homogeneous earth (ranging from 1 mmhos/m to 10 mhos/m). Two actual field examples are presented from Ontario, Canada; one relating to the mapping of overburden conditions (sand, clay and rock, etc) and the other to the mapping of the distribution of a buried lignite deposit. Other areas of potential application of the system to surficial materials would include groundwater mapping, permafrost investigations, and civil engineering studies for roads and pipelines.


2019 ◽  
Vol 41 (1) ◽  
pp. 5-45 ◽  
Author(s):  
Graham J. Hill

Abstract The polar regions are host to fundamental unresolved challenges in Earth studies. The nature of these regions necessitates the use of geophysics to address these issues, with electromagnetic and, in particular, magnetotelluric studies finding favour and being applied over a number of different scales. The unique geography and climatic conditions of the polar regions means collecting magnetotelluric data at high latitudes, which presents challenges not typically encountered and may result in significant measurement errors. (1) The very high contact resistance between electrodes and the surficial snow and ice cover (commonly MΩ) can interfere with the electric field measurement. This is overcome by using custom-designed amplifiers placed at the active electrodes to buffer their high impedance contacts. (2) The proximity to the geomagnetic poles requires verification of the fundamental assumption in magnetotellurics that the magnetic source field is a vertically propagating, horizontally polarised plane wave. Behaviour of the polar electro-jet must be assessed to identify increased activity (high energy periods) that create strong current systems and may generate non-planar contributions. (3) The generation of ‘blizstatic’, localised random electric fields caused by the spin drift of moving charged snow and ice particles that produce significant noise in the electric fields during periods of strong winds. At wind speeds above ~ 10 m s−1, the effect of the distortion created by the moving snow is broad-band. Station occupation times need to be of sufficient length to ensure data are collected when wind speed is low. (4) Working on glaciated terrain introduces additional safety challenges, e.g., weather, crevasse hazards, etc. Inclusion of a mountaineer in the team, both during the site location planning and onsite operations, allows these hazards to be properly managed. Examples spanning studies covering development and application of novel electromagnetic approaches for the polar regions as well as results from studies addressing a variety of differing geologic questions are presented. Electromagnetic studies focusing on near-surface hydrologic systems, glacial and ice sheet dynamics, as well as large-scale volcanic and tectonic problems are discussed providing an overview of the use of electromagnetic methods to investigate fundamental questions in solid earth studies that have both been completed and are currently ongoing in polar regions.


Geomorphology ◽  
2018 ◽  
Vol 315 ◽  
pp. 1-16 ◽  
Author(s):  
Rosa M. Carrasco ◽  
Valentí Turu ◽  
Javier Pedraza ◽  
Alfonso Muñoz-Martín ◽  
Xavier Ros ◽  
...  

Geophysics ◽  
1983 ◽  
Vol 48 (11) ◽  
pp. 1468-1485 ◽  
Author(s):  
Dushan B. Jovanovich ◽  
Roger D. Sumner ◽  
Sharon L. Akins‐Easterlin

Detailed lithologic interpretation of seismic sections and/or pseudo‐sonic logs generated from seismic data requires that the seismic trace can be modeled as a reflection series convolved with a zero‐phase broadband wavelet. Ghosting and marine signature deconvolution processing is a prerequisite for assuring that the seismic wavelet on a marine CDP section will be zero phase. A deterministic approach to deconvolution is centered around the concept of abandoning the purely statistical method of wavelet estimation and actually measuring the seismic wavelet. A proper signature recording for marine data is, therefore, a crucial component of deterministic deconvolution. Another important element in the deterministic deconvolution sequence is the application of a deghosting filter to remove near‐surface reflections. Proper application of a deghosting filter significantly improves the correlation between log synthetics and the seismic trace. It has been found that statistical deconvolution schemes, because of the number of statistical hypotheses required to produce a deconvolution filter, produce residual wavelets that are highly variable in character and whose average phases cover the entire phase spectrum, modulo 2π. Examples of a Gulf Coast marine line which was shot with Aquapulse™, air gun, and Maxipulse™ sources by the RV Hollis Hedberg are presented to demonstrate the differences between statistical and deterministic deconvolution processing sequences. It will be shown, using sonic logs from wells adjacent to the seismic line, that the deterministic deconvolution sections for all three sources are close to zero phase while the statistical deconvolution sections have residual average phase errors between 180 and 270 degrees. The deterministic deconvolution sections have a high degree of correlation among themselves and to the wells adjacent to the line, while the statistical deconvolution sections correlate poorly to each other and to the wells. Synthetic seismograms and their impedance logs, and the seismic sections and their corresponding pseudo‐sonic logs, are used to demonstrate how deconvolution influences lithologic interpretation. ™Western Geophysics Co.


2011 ◽  
Vol 27 (3) ◽  
pp. 661-682 ◽  
Author(s):  
Edén Bojórquez ◽  
Amador Terán-Gilmore ◽  
Sonia E. Ruiz ◽  
Alfredo Reyes-Salazar

The structural reliability in terms of maximum interstory drift—and, alternatively, in terms of plastic hysteretic energy—is evaluated for six regular moment-resisting steel frames designed according to the Mexico City Building Code, and located in the Lake Zone of that city. While the maximum interstory drift was used because of its relevance within the format of current seismic design codes, the plastic hysteretic energy was considered due to its importance for the performance of structures when subjected to severe cumulative plastic deformation demands. The demand hazard curves of the frames in terms of drift and energy are compared to provide a general idea of the reliability levels associated to the models, and to provide insights into which response parameter dominates their dynamic behavior and structural performance. In some cases, large differences are observed in the reliabilities computed by measure of the two different response parameters under consideration.


2013 ◽  
Vol 30 (3) ◽  
pp. 450-469 ◽  
Author(s):  
Sébastien P. Bigorre ◽  
Robert A. Weller ◽  
James B. Edson ◽  
Jonathan D. Ware

Abstract A surface mooring was deployed in the Gulf Stream for 15 months to investigate the role of air–sea interaction in mode water formation and other processes. The accuracies of the near-surface meteorological and oceanographic measurements are investigated. In addition, the impacts of these measurement errors on the estimation and study of the air–sea fluxes in the Gulf Stream are discussed. Pre- and postdeployment calibrations together with in situ comparison between shipboard and moored sensors supported the identification of biases due to sensor drifts, sensor electronics, and calibration errors. A postdeployment field study was used to further investigate the performance of the wind sensors. The use of redundant sensor sets not only supported the filling of data gaps but also allowed an examination of the contribution of random errors. Air–sea fluxes were also analyzed and computed from both Coupled Ocean–Atmosphere Response Experiment (COARE) bulk parameterization and using direct covariance measurements. The basic conclusion is that the surface buoy deployed in the Gulf Stream to support air–sea interaction research was successful, providing an improved 15-month record of surface meteorology, upper-ocean variability, and air–sea fluxes with known accuracies. At the same time, the coincident deployment of mean meteorological and turbulent flux sensors proved to be a successful strategy to certify the validity of the bulk formula fluxes over the midrange of wind speeds and to support further work to address the present shortcomings of the bulk formula methods at the low and high wind speeds.


2021 ◽  
Author(s):  
Colin Morice ◽  
John Kennedy ◽  
Nick Rayner ◽  
Jonathan Winn ◽  
Emma Hogan ◽  
...  

<p>The new HadCRUT5 data set combines meteorological station air temperature records with sea-surface temperature measurements in a data set of near-surface temperature anomalies from the year 1850 to present. Major developments in HadCRUT5 include: updates to underpinning observation data holdings; use of an updated assessment of the impacts of changing marine measurement methods; and adoption of a statistical gridding method to extend estimates into sparsely observed regions of the globe, such as the Arctic. The data are presented as a 200-member ensemble that spans the assessed uncertainty associated with adjustments for long-term observational biases, observing platform measurement errors and the interaction of observational sampling with gridding methods. The impacts of methodological changes in HadCRUT5 on diagnostics of the global climate will be discussed and compared to results derived from other state-of-the-art global data sets.</p>


Geophysics ◽  
1994 ◽  
Vol 59 (5) ◽  
pp. 744-752 ◽  
Author(s):  
B. E. Khesin ◽  
L. V. Eppelbaum

Temperature measurements at shallow depths (up to 3 m) contain useful information about features of the geological structures in the areas under investigation; however, the noise caused by seasonal temperature variations and terrain relief effects may significantly distort the observed temperature field. Therefore, procedures are developed for the calculation and removal of these noise sources: (a) seasonal variations are first eliminated by a procedure using repeated observations; (b) terrain relief corrections are calculated by a correlation technique, which facilitates the identification of anomalies associated with concealed geological features. Essential similarities between thermal and magnetic prospecting make it possible to apply to thermal prospecting modifications of the rapid methods of characteristic points and tangents developed for magnetic prospecting. These methods are applicable to conditions of inclined relief, arbitrary magnetization polarization), and an unknown level of the normal field. The methods can be used to locate disturbing bodies by their associated temperature anomalies. Interpretation is made possible by approximating bodies by a dipping thin sheet or a horizontal circular cylinder. The interpretation results obtained both on models and polymetallic (Greater Caucasus) and oil and gas (Middle Kura Depression) deposits testify to the accuracy and reliability of these methods. These methods were also used successfully for interpretation of temperature anomaly over underground cavity in Cracov (Poland).


Sign in / Sign up

Export Citation Format

Share Document