scholarly journals Ground-penetrating radar theory and application of thin-bed offset-dependent reflectivity

Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. K47-K57 ◽  
Author(s):  
John H. Bradford ◽  
Jacob C. Deeds

Offset-dependent reflectivity or amplitude-variation-with-offset (AVO) analysis of ground-penetrating radar (GPR) data may improve the resolution of subsurface dielectric permittivity estimates. A horizontally stratified medium has a limiting layer thickness below which thin-bed AVO analysis is necessary. For a typical GPR signal, this limit is approximately 0.75 of the characteristic wavelength of the signal. Our approach to modeling the GPR thin-bed response is a broadband, frequency-dependent computation that utilizes an analytical solution to the three-interface reflectivity and is easy to implement for either transverse electric (TE) or transverse magnetic (TM) polarizations. The AVO curves for TE and TM modes differ significantly. In some cases, constraining the interpretation using both TE and TM data is critical. In two field examples taken from contaminated-site characterization data, we find quantitative thin-bed modeling agrees with the GPR field data and available characterization data.

2018 ◽  
Vol 23 (4) ◽  
pp. 423-436 ◽  
Author(s):  
Robert W. Jacob ◽  
Jeffrey M. Trop ◽  
R. Craig Kochel

Icy debris fans have recently been described as fan shaped depositional landforms associated with (or formed during) deglaciation, however, the subsurface characteristics remain essentially undocumented. We used ground penetrating radar (GPR) to non-invasively investigate the subsurface characteristics of icy debris fans (IDFs) at McCarthy Glacier, Alaska, USA and at La Perouse Glacier, South Island of New Zealand. IDFs are largely unexplored paraglacial landforms in deglaciating alpine regions at the mouths of bedrock catchments between valley glaciers and icecaps. IDFs receive deposits of mainly ice and minor lithic material through different mass-flow processes, chiefly ice avalanche and to a lesser extent debris flow, slushflow, and rockfall. We report here on the GPR signal velocity observed from 15 different wide-angle reflection/refraction (WARR) soundings on the IDFs and on the McCarthy Glacier; the effect of GPR antenna orientation relative to subsurface reflections; the effect of spreading direction of the WARR soundings relative to topographic contour; observed differences between transverse electric (TE) and transverse magnetic (TM) antenna polarization; and a GPR profile extending from the McCarthy Glacier onto an IDF. Evaluation of the WARR soundings indicates that the IDF deposits have a GPR signal velocity that is similar to the underlying glacier, and that the antenna polarization and orientation did not prevent identification of GPR reflections. The GPR profile on the McCarthy Glacier indicates that the shallowest material is layered, decreases in thickness down fan, and has evidence of brittle failure planes (crevasses). The GPR profile and WARR soundings collected in 2013 indicate that the thickness of the McCarthy Glacier is 82 m in the approximate middle of the cirque and that the IDF deposits transition with depth into flowing glacial ice.


2022 ◽  
Author(s):  
Lamees N. Abdulkareem ◽  

Amplitude variation with offset (AVO) analysis is an 1 efficient tool for hydrocarbon detection and identification of elastic rock properties and fluid types. It has been applied in the present study using reprocessed pre-stack 2D seismic data (1992, Caulerpa) from north-west of the Bonaparte Basin, Australia. The AVO response along the 2D pre-stack seismic data in the Laminaria High NW shelf of Australia was also investigated. Three hypotheses were suggested to investigate the AVO behaviour of the amplitude anomalies in which three different factors; fluid substitution, porosity and thickness (Wedge model) were tested. The AVO models with the synthetic gathers were analysed using log information to find which of these is the controlling parameter on the AVO analysis. AVO cross plots from the real pre-stack seismic data reveal AVO class IV (showing a negative intercept decreasing with offset). This result matches our modelled result of fluid substitution for the seismic synthetics. It is concluded that fluid substitution is the controlling parameter on the AVO analysis and therefore, the high amplitude anomaly on the seabed and the target horizon 9 is the result of changing the fluid content and the lithology along the target horizons. While changing the porosity has little effect on the amplitude variation with offset within the AVO cross plot. Finally, results from the wedge models show that a small change of thickness causes a change in the amplitude; however, this change in thickness gives a different AVO characteristic and a mismatch with the AVO result of the real 2D pre-stack seismic data. Therefore, a constant thin layer with changing fluids is more likely to be the cause of the high amplitude anomalies.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1177-1183 ◽  
Author(s):  
Anat Canning ◽  
Gerald H. F. Gardner

The acquisition patterns of 3-D surveys often have a significant effect on the results of dip moveout (DMO) or prestack migration. When the spatial distribution of input traces is irregular, results from DMO and migration are contaminated by artifacts. In many cases, the footprint of the acquisition patterns can be seen on the migrated section and may result in incorrect interpretation. This phenomena also has a very significant effect on the feasibility of conducting amplitude variation with offset (AVO) analysis after 3-D prestack migration or after 3-D DMO, and also may affect velocity analysis. We propose a simple enhancement to migration and DMO programs that acts to minimize acquisition artifacts.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 991
Author(s):  
Ibrar Iqbal ◽  
Gang Tian ◽  
Zhejiang Wang ◽  
Zahid Masood ◽  
Yu Liu ◽  
...  

We evaluated the symmetry of theoretical and experimental analysis of water contamination such as non-aqueous phase liquid (NAPL) by using amplitude variations with offset analysis (AVO) of ground-penetrating radar (GPR) data. We used both theoretical and experimental approaches for AVO responses of GPR to small distributions of contamination. Theoretical modeling is a tool used to confirm the feasibility of geophysical surveys. Theoretical modeling of NAPL-contaminated sites containing wet sand—both with the water and light non-aqueous phase liquid—was applied by keeping in consideration the GPR AVO analysis in acquisition. Reflectivity was significantly altered with the changes in the contents of water and NAPL during modeling. The wet and dry sands introduced in our model changed two major phenomena: one, the wave pattern—implying a slight phase shift in the wave; and two, an amplitude jump with the dim reflection radar gram observed in the model. Experimental data were collected and analyzed; two observations were recorded during physical data analysis. First, relative permittivity confirmed the presence of NAPL in an experimental tank. Second, reflection patterns with jumps in amplitude and changes in polarity confirmed the theoretical investigation. Our results demonstrate that GPR AVO analysis can be as effective for detection of non-aqueous phase liquid (NAPLs) as it has been used to determine moisture contents in the past. The theoretical and experimental models were in symmetry, and both found a jump in reflection strength. The reflection pattern normally jumped with NAPL-intrusion. From the perspective of water contamination, this study emphasizes the need to take into account the impact of GPR AVO analyses along with the expert’s adaptive capacities.


Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. C15-C23 ◽  
Author(s):  
Lyubov Skopintseva ◽  
Alexey Stovas

Amplitude-variation-with-offset (AVO) analysis is strongly dependent on interpretation of the estimated traveltime parameters. In practice, we can estimate two or three traveltime parameters that require interpretation within the families of two- or three-parameter velocity models, respectively. Increasing the number of model parameters improves the quality of overburden description and reduces errors in AVO analysis. We have analyzed the effect of two- and three-parameter velocity model interpretation for the overburden on AVO data and have developed error estimates in the reservoir parameters.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. N13-N25 ◽  
Author(s):  
Xinding Fang ◽  
Yingcai Zheng ◽  
Michael C. Fehler

Traditional amplitude variation with offset and azimuth (AVOAz) analysis for fracture characterization extracts fracture properties through analysis of reflection AVOAz to determine anisotropic parameters (e.g., Thomsen’s parameters) that are then related to fracture properties. The validity of this method relies on the basic assumption that a fractured unit can be viewed as an equivalent anisotropic medium. As a rule of thumb, this assumption is taken to be valid when the fracture spacing is less than [Formula: see text]. Under the effective medium assumption, diffractions from individual fractures destructively interfere and only specular reflections from boundaries of a fractured layer can be observed in seismic data. The effective medium theory has been widely used in fracture characterization, and its applicability has been validated through many field applications. However, through numerical simulations, we find that diffractions from fracture clusters can significantly distort the AVOAz signatures when a fracture system has irregular spacing even though the average fracture spacing is much smaller than a wavelength (e.g., [Formula: see text]). Contamination by diffractions from irregularly spaced fractures on reflections can substantially bias the fracture properties estimated from AVOAz analysis and may possibly lead to incorrect estimates of fracture properties. Additionally, through Monte Carlo simulations, we find that fracture spacing uncertainty inverted from amplitude variation with offset (AVO) analysis can be up to 10%–20% when fractures are not uniformly distributed, which should be the realistic state of fractures present in the earth. Also, AVOAz and AVO analysis gives more reliable estimates of fracture properties when reflections at the top of the fractured layer are used compared with those from the bottom of the layer.


Sign in / Sign up

Export Citation Format

Share Document