Data-driven, target-oriented, kinematic prediction and subtraction of multiples from pure and mode-converted multicomponent data

Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. V105-V114 ◽  
Author(s):  
Juanjuan Cao ◽  
George A. McMechan

Most multiple removal algorithms focus on multiples of primary P-wave reflections; removal of multiples of converted reflections have not received comparable attention, so explicit consideration is overdue. A target-oriented algorithm predicts converted wave multiples by coupling apparent slownesses, and then subtracts them from elastic common-source data in a data-adaptive window. Prediction is based on matching apparent slownesses in common-source and common-receiver gathers at all source and receiver locations along the propagation path. Predictions use only offset and traveltime, of the primary pure and converted waves that produce the multiples, picked from common-source gathers, and the slownesses calculated from them. Higher-order multiples can be predicted by repeating this process to match slownesses at a sequence of alternating source and receiver locations in turn. Primary reflections (e.g., SS, SP, and PS) that are considered to be noise, can also be subtracted. The predictions are data-driven and require no velocities, angles, reflector orientations or free-surface topography. Any single component (usually vertical) may be used to identify and pick the traveltimes. The resulting predictions are also valid for all other components. The subtraction involves flattening the predicted time trajectory of the multiple, followed by trace averaging to estimate the local wavelet at each location in a moving trace and time window that contains the wavelet of the multiple. The subtraction is data-adaptive, and implicitly involves amplitude and phase information, so separate or prior estimation of the source time or directivity functions is not required. Two synthetic examples showed that the slowness-based algorithm is successful in predicting and reducing converted wave multiples in an elastic medium. Migrated P-wave subsurface images are generated before and after multiple removal to evaluate the performance. Polarity correction of the horizontal component (either before or after subtraction) ensures coherent stacking.

Geophysics ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. D29-D36 ◽  
Author(s):  
Mirko van der Baan

Common-conversion-point (CCP) sorting of P-SV converted-wave data is conventionally done by first sorting data into common asymptotic-conversion-point (CACP) gathers and then computing the involved CCP shifts from analytic approximations. I explore an alternative method where the latter step is replaced by an entirely data-driven approach. Moveout curves of correlated P-P and P-SV reflections in collocated CMP and CACP gathers are first scanned for points of equal slowness. A common-source slowness indicates that the downgoing branches of the P-P and P-SV waves overlap if the conversion occurs at the reflecting interface. The P-SV conversion point is then assumed to be situated underneath the associated P-P wave midpoint. A migration of amplitudes from CACP to CCP gathers is straightforward once the exact CCP position is known. This data-driven approach requires kinematic information only and is exact for laterally homogeneous media with arbitrary strength of anisotropy if horizontal symmetry planes are present at all depths. Both time-offset and τ-p domain implementations are possible, although the latter are preferred.


Geophysics ◽  
1990 ◽  
Vol 55 (6) ◽  
pp. 646-659 ◽  
Author(s):  
C. Frasier ◽  
D. Winterstein

In 1980 Chevron recorded a three‐component seismic line using vertical (V) and transverse (T) motion vibrators over the Putah sink gas field near Davis, California. The purpose was to record the total vector motion of the various reflection types excited by the two sources, with emphasis on converted P‐S reflections. Analysis of the conventional reflection data agreed with results from the Conoco Shear Wave Group Shoot of 1977–1978. For example, the P‐P wave section had gas‐sand bright spots which were absent in the S‐S wave section. Shot profiles from the V vibrators showed strong P‐S converted wave events on the horizontal radial component (R) as expected. To our surprise, shot records from the T vibrators showed S‐P converted wave events on the V component, with low amplitudes but high signal‐to‐noise (S/N) ratios. These S‐P events were likely products of split S‐waves generated in anisotropic subsurface media. Components of these downgoing waves in the plane of incidence were converted to P‐waves on reflection and arrived at receivers in a low‐noise time window ahead of the S‐S waves. The two types of converted waves (P‐S and S‐P) were first stacked by common midpoint (CMP). The unexpected S‐P section was lower in true amplitude but much higher in S/N ratio than the P‐S section. The Winters gas‐sand bright spot was missing on the converted wave sections, mimicking the S‐S reflectivity as expected. CRP gathers were formed by rebinning data by a simple ray‐tracing formula based on the asymmetry of raypaths. CRP stacking improved P‐S and S‐P event resolution relative to CMP stacking and laterally aligned structural features with their counterparts on P and S sections. Thus, the unexpected S‐P data provided us with an extra check for our converted wave data processing.


Author(s):  
Ashish Kumar Agarwal ◽  
Daulat Singh Meena ◽  
Vijay Pathak ◽  
Anoop Jain ◽  
Rakesh Kumar Ola

Background: The aim of the present study was to study the effect of percutaneous balloon mitral  valvuloplasty (PBMV) on P wave dispersion and to test the correlation between P-maximum and  P-dispersion to right ventricular function and pulmonary artery pressure before and after PMBV. Also to study the impact of P-maximum and P-wave dispersion on the short term clinical outcome after successful PBMV in patients with mitral stenosis (MS) and sinus rhythm. Methods: 75 patients undergoing PMBV were enrolled in this study. We evaluated P-maximum, P-minimum and P-wave dispersion before and one month and one year after PBMV . We studied the changes in pulmonary arterial pressure (PAP), left atrial (LA) dimension, mitral diastolic gradient, and mitral valve area, in addition to the changes in right ventricular function utilizing tissue Doppler assessment both before and after PMBV, in addition the role of the P-wave dispersion in prediction of late cardiac events. Results: There were significant decrease in mean diastolic gradient, PAP, and LA size and significant improvement in right ventricular tissue Doppler indices after PMBV. Accompany these hemodynamic changes after PMBV. P-maximum and P-wave dispersion were found to be decreased (P < 0.001). Conclusion: Successful PBMV was associated with a decrease in Pmax and PWD. These simple electrocardiographic indices may predict the success of the procedure immediately after PBMV.  The P-maximum and P-wave dispersion changes were correlated with significant impairment of right dysfunction and the degree of pulmonary artery pressure. Keywords: PBMV.PAP,LA


Author(s):  
Hongying Shan ◽  
Chuang Wang ◽  
Cungang Zou ◽  
Mengyao Qin

This paper is a study of the dynamic path planning problem of the pull-type multiple Automated Guided Vehicle (multi-AGV) complex system. First, based on research status at home and abroad, the conflict types, common planning algorithms, and task scheduling methods of different AGV complex systems are compared and analyzed. After comparing the different algorithms, the Dijkstra algorithm was selected as the path planning algorithm. Secondly, a mathematical model is set up for the shortest path of the total driving path, and a general algorithm for multi-AGV collision-free path planning based on a time window is proposed. After a thorough study of the shortcomings of traditional single-car planning and conflict resolution algorithms, a time window improvement algorithm for the planning path and the solution of the path conflict covariance is established. Experiments on VC++ software showed that the improved algorithm reduces the time of path planning and improves the punctual delivery rate of tasks. Finally, the algorithm is applied to material distribution in the OSIS workshop of a C enterprise company. It can be determined that the method is feasible in the actual production and has a certain application value by the improvement of the data before and after the comparison.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ilaria Izzo ◽  
Canio Carriero ◽  
Giulia Gardini ◽  
Benedetta Fumarola ◽  
Erika Chiari ◽  
...  

Abstract Background Brescia Province, northern Italy, was one of the worst epicenters of the COVID-19 pandemic. The division of infectious diseases of ASST (Azienda Socio Sanitaria Territoriale) Spedali Civili Hospital of Brescia had to face a great number of inpatients with severe COVID-19 infection and to ensure the continuum of care for almost 4000 outpatients with HIV infection actively followed by us. In a recent manuscript we described the impact of the pandemic on continuum of care in our HIV cohort expressed as number of missed visits, number of new HIV diagnosis, drop in ART (antiretroviral therapy) dispensation and number of hospitalized HIV patients due to SARS-CoV-2 infection. In this short communication, we completed the previous article with data of HIV plasmatic viremia of the same cohort before and during pandemic. Methods We considered all HIV-patients in stable ART for at least 6 months and with at least 1 available HIV viremia in the time window March 01–November 30, 2019, and another group of HIV patients with the same two requisites but in different time windows of the COVID-19 period (March 01–May 31, 2020, and June 01–November 30, 2020). For patients with positive viremia (PV) during COVID-19 period, we reported also the values of viral load (VL) just before and after PV. Results: the percentage of patients with PV during COVID-19 period was lower than the previous year (2.8% vs 7%). Only 1% of our outpatients surely suffered from pandemic in term of loss of previous viral suppression. Conclusions Our efforts to limit the impact of pandemic on our HIV outpatients were effective to ensure HIV continuum of care.


2021 ◽  

ackground/Purpose: Endotracheal tube (ETT)-related sore throat is a common source of stress in intensive care. Quantitative studies on therapy for ETT-related sore throat remain limited. The current study evaluated the therapeutic effects of oral acetaminophen (ACT) and lidocaine (LIDO) spray on pain relief for ETT-related sore throat in intensive care. Methods: Patients who could communicate with caregivers non-verbally and who had acquired ETT-related sore throat at a medical intensive care unit (ICU) were enrolled. The medications were dispensed at the request of the patients. The intensity of ETT-related throat pain was recorded for quantitative comparison before and after patients received 500 mg of ACT orally or one dose of 10% LIDO spray locally. Before leaving the ICU, the patients were interviewed by a research nurse to assess the effect of these interventions on satisfaction with pain management for ETT-related sore throat. Results: We enrolled 89 patients during the study period, and the intensity of ETT-related throat pain significantly decreased after treatment (6.97 in 5 min before vs. 3.60 in 120 min after oral ACT, P < 0.001; 8.56 in 5 min before vs. 4.12 in 120 min after LIDO application, P < 0.001). The degree of pain reduction over time differed between the ACT and LIDO groups. Patients in the LIDO group made more requests for additional therapy compared with patients in the ACT group (1 LIDO spray per request for an average of 4.7 requests vs. 1 ACT dose per request for an average of 1.3 requests, P < 0.001). Patients in both the ACT and LIDO groups reported high satisfaction with pain management for ETT-related sore throat (87.3 of 100 vs. 86.5 of 100, respectively, P = 0.805). Conclusion: ACT and LIDO treatment can effectively attenuate ETT-related sore throat. Patients were highly satisfied with pain management for ETT-related sore throat after both oral ACT and local LIDO application.


1990 ◽  
Vol 80 (6B) ◽  
pp. 2032-2052 ◽  
Author(s):  
D. C. Jepsen ◽  
B. L. N. Kennett

Abstract Both phased array techniques for single-component sensors and vectorial analysis of three-component recordings can provide estimates of the azimuth and slowness of seismic phases. However, a combination of these approaches provides a more powerful tool to estimate the propagation characteristics of different seismic phases at regional distances. Conventional approaches to the analysis of three-component seismic records endeavor to exploit the apparent angles of propagation in horizontal and vertical planes as well as the polarization of the waves. The basic assumption is that for a given time window there is a dominant wavetype (e.g., a P wave) traveling in a particular direction arriving at the seismic station. By testing a range of characteristics of the three-component records, a set of rules can be established for classifying much of the seismogram in terms of wavetype and direction. It is, however, difficult to recognize SH waves in the presence of other wavetypes. Problems also arise when more than one signal (in either wavetype or direction) arrive in the same window. The stability and robustness of the classification scheme is much improved when records from an array of three-component sensors are combined. For a set of three-component instruments forming part of a larger array, it is possible to estimate the slowness and azimuth of arrivals from the main array and then extract the relative proportions of the current P-, SV-, and SH-wave contributions to the seismogram. This form of wavetype decomposition depends on a model of near-surface propagation. A convenient choice for hard-rock sites is to include just the effect of the free surface, which generates a frequency-independent operation on the three-component seismograms and which is not very sensitive to surface velocities. This approach generates good estimates of the character of the S wavefield, because the phase distortion of SV induced by the free surface can be removed. The method has been successfully applied to regional seismograms recorded at the medium aperture Warramunga array in northern Australia, and the two small arrays NORESS and ARCESS in Norway, which were designed for studies of regional phases. The new wavefield decomposition scheme provides results in which the relative proportions of P, SV, and SH waves as a function of time can be compared without the distortion imposed by free surface amplification. Such information can provide a useful adjunct to existing measures of signal character used in source discrimination.


Geophysics ◽  
1994 ◽  
Vol 59 (4) ◽  
pp. 597-609 ◽  
Author(s):  
Wen‐Fong Chang ◽  
George A. McMechan

By combining and extending previous algorithms for 2-D prestack elastic migration and 3-D prestack acoustic migration, a full 3-D elastic prestack depth migration algorithm is developed. Reverse‐time extrapolation of the recorded data is by 3-D elastic finite differences; computation of the image time for each point in the 3-D volume is by 3-D acoustic finite differences. The algorithm operates on three‐component, vector‐wavefield common‐source data and produces three‐component vector reflectivity distributions. Converted P‐to‐S reflections are automatically imaged with the primary P‐wave reflections. There are no dip restrictions as the full wave equation is used. The algorithm is illustrated by application to synthetic data from three models; a flat reflector, a dipping truncated wedge overlying a flat reflector, and the classical French double dome and fault model.


Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. R1-R12 ◽  
Author(s):  
E. Diego Mercerat ◽  
Guust Nolet ◽  
Christophe Zaroli

We evaluated a comprehensive numerical experiment of finite-frequency tomography with ray-based (“banana-doughnut”) kernels that tested all aspects of this method, starting from the generation of seismograms in a 3D model, the window selection, and the crosscorrelation with seismograms predicted for a background model, to the final regularized inversion. In particular, we tested if the quasilinearity of crosscorrelation delays allowed us to forego multiple (linearized) iterations in the case of strong reverberations characterizing multiple scattering and the gain in resolution that can be obtained by observing body-wave dispersion. Contrary to onset times, traveltimes observed by crosscorrelation allowed us to exploit energy arriving later in the time window centered in the P-wave or any other indentifiable ray arrival, either scattered from, or diffracted around, lateral heterogeneities. We tested using seismograms calculated by the spectral element method in a cross-borehole experiment conducted in a 3D checkerboard cube. The use of multiple frequency bands allowed us to estimate body-wave dispersion caused by diffraction effects. The large velocity contrast (10%) and the regularity of the checkerboard pattern caused severe reverberations that arrived late in the crosscorrelation windows. Nevertheless, the model resulting from the inversion with a data fit with reduced [Formula: see text] resulted in an excellent correspondence with the input model and allowed for a complete validation of the linearizations that lay at the basis of the theory. The use of multiple frequencies led to a significant increase in resolution. Moreover, we evaluated a case in which the sign of the anomalies in the checkerboard was systematically reversed in the ray-theoretical solution, a clear demonstration of the reality of the “doughnut-hole” effect. The experiment validated finite-frequency theory and disqualified ray-theoretical inversions of crosscorrelation delay times.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. C85-C97 ◽  
Author(s):  
Nepomuk Boitz ◽  
Anton Reshetnikov ◽  
Serge A. Shapiro

Radiation patterns of earthquakes contain important information on tectonic strain responsible for seismic events. However, elastic anisotropy may significantly impact these patterns. We systematically investigate and visualize the effect of anisotropy on the radiation patterns of microseismic events. For visualization, we use a vertical-transverse-isotropic (VTI) medium. We distinguish between two different effects: the anisotropy in the source and the anisotropy on the propagation path. Source anisotropy mathematically comes from the matrix multiplication of the anisotropic stiffness tensor with the source strain expressed by the potency tensor. We analyze this effect using the corresponding radiation pattern and the moment tensor decomposition. Propagation anisotropy mathematically comes from the deviation between the polarization and the propagation direction of a quasi P-wave in an anisotropic medium. We investigate both effects separately by either assuming the source to be anisotropic and the propagation to be isotropic or vice versa. We find that both effects have a significant impact on the radiation pattern of a pure-slip source. Finally, we develop an alternative visualization of source mechanisms by plotting beach balls proportional to their potency tensors. For this, we multiply the potency tensor with an isotropic elasticity tensor having the equivalent shear modulus [Formula: see text] and [Formula: see text]. In this way, we visualize the tectonic deformation in the source, independently of the rock anisotropy.


Sign in / Sign up

Export Citation Format

Share Document