3D modeling and inversion of VLF and VLF-R electromagnetic data

Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. WB219-WB231 ◽  
Author(s):  
P. Kaikkonen ◽  
S. P. Sharma ◽  
S. Mittal

Three-dimensional linearized nonlinear electromagnetic inversion is developed for revealing the subsurface conductivity structure using isolated very low frequency (VLF) and VLF-resistivity anomalies due to conductors that may be arbitrarily directed towards the measuring profiles and the VLF transmitter. We described the 3D model using a set of variables in terms of geometric and physical parameters. These model parameters were then optimized (parametric inversion) to obtain their best estimates to fit the observations. Two VLF transmitters, i.e., the [Formula: see text], [Formula: see text] (“E”) and the [Formula: see text], [Formula: see text] (“H”) polarizations, respectively, can be considered jointly in inversion. After inverting several noise-free and noisy synthetic data, the results revealed that the estimated model parameters and the functionality of the approach were very good and reliable. The inversion procedure also worked well for the field data. The reliability and validity of the results after the field data inversion have been checked using data from a shear zone associated with uranium mineralization.

Author(s):  
Christopher J. Arthurs ◽  
Nan Xiao ◽  
Philippe Moireau ◽  
Tobias Schaeffter ◽  
C. Alberto Figueroa

AbstractA major challenge in constructing three dimensional patient specific hemodynamic models is the calibration of model parameters to match patient data on flow, pressure, wall motion, etc. acquired in the clinic. Current workflows are manual and time-consuming. This work presents a flexible computational framework for model parameter estimation in cardiovascular flows that relies on the following fundamental contributions. (i) A Reduced-Order Unscented Kalman Filter (ROUKF) model for data assimilation for wall material and simple lumped parameter network (LPN) boundary condition model parameters. (ii) A constrained least squares augmentation (ROUKF-CLS) for more complex LPNs. (iii) A “Netlist” implementation, supporting easy filtering of parameters in such complex LPNs. The ROUKF algorithm is demonstrated using non-invasive patient-specific data on anatomy, flow and pressure from a healthy volunteer. The ROUKF-CLS algorithm is demonstrated using synthetic data on a coronary LPN. The methods described in this paper have been implemented as part of the CRIMSON hemodynamics software package.


Author(s):  
Satenik Harutyunyan ◽  
Davresh Hasanyan

A non-linear theoretical model including bending and longitudinal vibration effects was developed for predicting the magneto electric (ME) effects in a laminate bar composite structure consisting of magnetostrictive and piezoelectric multi-layers. If the magnitude of the applied field increases, the deflection rapidly increases and the difference between experimental results and linear predictions becomes large. However, the nonlinear predictions based on the present model well agree with the experimental results within a wide range of applied electric field. The results of the analysis are believed to be useful for materials selection and actuator structure design of actuator in actuator fabrication. It is shown that the problem for bars of symmetrical structure is not divided into a plane problem and a bending problem. A way of simplifying the solution of the problem is found by an asymptotic method. After solving the problem for a laminated bar, formula that enable one to change from one-dimensional required quantities to three dimensional quantities are obtained. The derived analytical expression for ME coefficients depend on vibration frequency and other geometrical and physical parameters of laminated composites. Parametric studies are presented to evaluate the influences of material properties and geometries on strain distribution and the ME coefficient. Analytical expressions indicate that the vibration frequency strongly influences the strain distribution in the laminates, and that these effects strongly influence the ME coefficients. It is shown that for certain values of vibration frequency (resonance frequency), the ME coefficient becomes infinity; as a particular case, low frequency ME coefficient were derived as well.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. J85-J98
Author(s):  
Shuang Liu ◽  
Xiangyun Hu ◽  
Dalian Zhang ◽  
Bangshun Wei ◽  
Meixia Geng ◽  
...  

Natural remanent magnetization acts as a record of the previous orientations of the earth’s magnetic field, and it is an important feature when studying geologic phenomena. The so-called IDQ curve is used to describe the relationship between the inclination ( I) and declination ( D) of remanent magnetization and the Köenigsberger ratio ( Q). Here, we construct the IDQ curve using data on ground and airborne magnetic anomalies. The curve is devised using modified approaches for estimating the total magnetization direction, e.g., identifying the maximal position of minimal reduced-to-the-pole fields or identifying correlations between total and vertical reduced-to-the-pole field gradients. The method is tested using synthetic data, and the results indicate that the IDQ curve can provide valuable information on the remanent magnetization direction based on available data on the Köenigsberger ratio. Then, the method is used to interpret field data from the Yeshan region in eastern China, where ground anomalies have been produced by igneous rocks, including diorite and basalt, which occur along with magnetite and hematite ore bodies. The IDQ curves for 24 subanomalies are constructed, and these curves indicate two main distribution clusters of remanent magnetization directions corresponding to different structural units of magma intrusion and help identify the lithologies of the magnetic sources in areas covered by Quaternary sediments. The estimated remanent magnetization directions for Cenozoic basalt are consistent with measurements made in paleomagnetism studies. The synthetic and field data indicate that the IDQ curve can be used to efficiently estimate the remanent magnetization direction from a magnetic anomaly, which could help with our understanding of geologic processes in an area.


Climate ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Md Masud Hasan ◽  
Barry F. W. Croke ◽  
Fazlul Karim

Probabilistic models are useful tools in understanding rainfall characteristics, generating synthetic data and predicting future events. This study describes the results from an analysis on comparing the probabilistic nature of daily, monthly and seasonal rainfall totals using data from 1327 rainfall stations across Australia. The main objective of this research is to develop a relationship between parameters obtained from models fitted to daily, monthly and seasonal rainfall totals. The study also examined the possibility of estimating the parameters for daily data using fitted parameters to monthly rainfall. Three distributions within the Exponential Dispersion Model (EDM) family (Normal, Gamma and Poisson-Gamma) were found to be optimal for modelling the daily, monthly and seasonal rainfall total. Within the EDM family, Poisson-Gamma distributions were found optimal in most cases, whereas the normal distribution was rarely optimal except for the stations from the wet region. Results showed large differences between regional and seasonal ϕ-index values (dispersion parameter), indicating the necessity of fitting separate models for each season. However, strong correlations were found between the parameters of combined data and those derived from individual seasons (0.70–0.81). This indicates the possibility of estimating parameters of individual season from the parameters of combined data. Such relationship has also been noticed for the parameters obtained through monthly and daily models. Findings of this research could be useful in understanding the probabilistic features of daily, monthly and seasonal rainfall and generating daily rainfall from monthly data for rainfall stations elsewhere.


2020 ◽  
Author(s):  
Jérémie Giraud ◽  
Hoël Seillé ◽  
Gerhard Visser ◽  
Mark Lindsay ◽  
Mark Jessell

<p>We introduce a methodology for the integration of results from 1D stochastic magnetotelluric (MT) data inversion into deterministic least-square inversions of gravity measurements. The goal of this study is to provide a technique capable of exploiting complementary information between 1D magnetotelluric data and gravity data to reduce the effect of non-uniqueness existing in both methodologies. Complementarity exists in terms of resolution, the 1D MT being mostly sensitive to vertical changes and gravity data sensitive to lateral property variations, but also in terms of the related petrophysics, where the sensitivity to different physical parameters (electrical conductivity and density) allows to distinguish between different contrasts in lithologies.  To this end, we perform a three-step workflow. Stochastic 1D MT inversions are performed first. The results are then fused to create 2D model ensembles. Thirdly, these ensembles are utilised as a source of prior information for gravity inversion. This is achieved by extracting geological information from the ensemble of resistivity model realisations honouring MT data (typically, ensemble comprising several thousands of models) to constrain gravity data inversion. <br><br>In our investigations, we generate synthetic data using the 3D geological structural framework of the Mansfield area  (Victoria, Australia) and subsequently perform stochastic MT inversions using a 1D trans-dimensional Markov chain Monte Carlo sampler. These inversions are designed to account for the uncertainty introduced by the presence of non-1D structures.  Following this, the 1D probabilistic ensembles for each site are fused into an ensemble of 2D models which can then be used for further modelling. The fusion method incorporates prior knowledge in terms of spatial lateral continuity and lithological sequencing, to create an image that reflects different scenarios from the ensemble of models from 1D MT inversion. It identifies several domains across the considered area where it is plausible for the different lithologies to occur. This information is then used to constrain gravity inversion using a clustering algorithm by varying the weights assigned to the different lithologies spatially accordingly with the domains defined from MT inversions. <br><br>Our results reveal that gravity inversion constrained by MT modelling results in this fashion provide models that present a lower model misfit and are geologically closer to the causative model than without MT-derived prior information. This is particularly true in areas poorly constrained by gravity data such as the basement. Importantly, in this example, the basement is better imaged by the combination of both gravity and MT data than by the separate techniques. The same applies, to a lesser extent, to dipping geological structures closer to surface. In the case of the Mansfield area, the synthetic modelling investigation we performed shows the potential of the workflow introduced here and that it can be confidently applied to real world data.</p>


2002 ◽  
Vol 55 (1) ◽  
pp. 71-95 ◽  
Author(s):  
Noriko Yamamoto-Mitani ◽  
Toshiko Abe ◽  
Yuko Okita ◽  
Kunihiko Hayashi ◽  
Chieko Sugishita ◽  
...  

This study develops a quality of life instrument for older Japanese people experiencing dementia (QLDJ). Quality of life (QL) for these older adults is defined as a three dimensional construct including 1) interacting with surroundings, 2) expressing self, and 3) experiencing minimum negative behaviors. From 53 items in the initial item pool, 24 were selected based on item reliability and validity using data from 3 studies that involve ten dementia-care experts (Study A) and 36 and 623 older persons and their formal caregivers in various care settings (Study B & C). Factor analysis of these items identified three domains that correspond to the conceptual definition of QL for older adults with dementia. The domain and total QL scores were calculated considering the relative weights of each item. Resultant domain and total scores of the QLDJ showed satisfactory reliability and evidence of validity.


Kappa Journal ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 240-249
Author(s):  
Muhammad Zuhdi ◽  
◽  
Jannatin Ardhuha ◽  
Kosim Kosim ◽  
Wahyudi Wahyudi ◽  
...  

The 4D microgravity method is a development of the gravity method with the time as the fourth dimension. This research was conducted to find a better way of interpreting the 4D gravity anomaly due to fluid injection around the reservoir. Researchers used GRABLOX for the interpretation of 4D anomalies around the reservoir. The results of the inversion of field data using GRABLOX provide the value of the injection fluid infiltration volume, which shows the distribution of the injection fluid movement on the reservoir. Another physical parameter that can be generated from GRABLOX with a modified value is the reduction in oil and gas saturation due to fluid injection. The inversion results using GRABLOX in the field data indicate a change in reservoir rock density up to 0.28 gr/cc associated with a reduction in gas and oil saturation. The reduction in gas saturation due to the injection fluid has the smallest value of 0% and the largest is up to 66%. The reduction in oil saturation only contributes to a density change of 20% of the reduction in gas saturation. The results of the GRABLOX trial on synthetic data and field data show that both can provide an identification of the movement of the injection fluid in the reservoir, as well as provide other physical parameters, ie. the reduction in oil saturation due to fluid injection.


2020 ◽  
Vol 10 (14) ◽  
pp. 4798
Author(s):  
Naín Vera ◽  
Carlos Couder-Castañeda ◽  
Jorge Hernández ◽  
Alfredo Trujillo-Alcántara ◽  
Mauricio Orozco-del-Castillo ◽  
...  

Potential-field-data imaging of complex geological features in deepwater salt-tectonic regions in the Gulf of Mexico remains an open active research field. There is still a lack of resolution in seismic imaging methods below and in the surroundings of allochthonous salt bodies. In this work, we present a novel three-dimensional potential-field-data simultaneous inversion method for imaging of salt features. This new approach incorporates a growth algorithm for source estimation, which progressively recovers geological structures by exploring a constrained parameter space; restrictions are posed from a priori geological knowledge of the study area. The algorithm is tested with synthetic data corresponding to a real complex salt-tectonic geological setting commonly found in exploration areas of deepwater Gulf of Mexico. Due to the huge amount of data involved in three-dimensional inversion of potential field data, the use of parallel computing techniques becomes mandatory. In this sense, to alleviate computational burden, an easy to implement parallelization strategy for the inversion scheme through OpenMP directives is presented. The methodology was applied to invert and integrate gravity, magnetic and full tensor gradient data of the study area.


2019 ◽  
Vol 11 (23) ◽  
pp. 2868 ◽  
Author(s):  
Zeng ◽  
Ritz ◽  
Zhao ◽  
Lan

The scattering transform, which applies multiple convolutions using known filters targeting different scales of time or frequency, has a strong similarity to the structure of convolution neural networks (CNNs), without requiring training to learn the convolution filters, and has been used for hyperspectral image classification in recent research. This paper investigates the application of the scattering transform framework to hyperspectral unmixing (STFHU). While state-of-the-art research on unmixing hyperspectral data utilizing scattering transforms is limited, the proposed end-to-end method applies pixel-based scattering transforms and preliminary three-dimensional (3D) scattering transforms to hyperspectral images in the remote sensing scenario to extract feature vectors, which are then trained by employing the regression model based on the k-nearest neighbor (k-NN) to estimate the abundance of maps of endmembers. Experiments compare performances of the proposed algorithm with a series of existing methods in quantitative terms based on both synthetic data and real-world hyperspectral datasets. Results indicate that the proposed approach is more robust to additive noise, which is suppressed by utilizing the rich information in both high-frequency and low-frequency components represented by the scattering transform. Furthermore, the proposed method achieves higher accuracy for unmixing using the same amount of training data with all comparative approaches, while achieving equivalent performance to the best performing CNN method but using much less training data.


Sign in / Sign up

Export Citation Format

Share Document