The combined effects of pressure and cementation on 4D seismic data

Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. WA135-WA148 ◽  
Author(s):  
Matthew Saul ◽  
David Lumley

Time-lapse seismology has proven to be a useful method for monitoring reservoir fluid flow, identifying unproduced hydrocarbons and injected fluids, and improving overall reservoir management decisions. The large magnitudes of observed time-lapse seismic anomalies associated with strong pore pressure increases are sometimes not explainable by velocity-pressure relationships determined by fitting elastic theory to core data. This can lead to difficulties in interpreting time-lapse seismic data in terms of physically realizable changes in reservoir properties during injection. It is commonly assumed that certain geologic properties remain constant during fluid production/injection, including rock porosity and grain cementation. We have developed a new nonelastic method based on rock physics diagnostics to describe the pressure sensitivity of rock properties that includes changes in the grain contact cement, and we applied the method to a 4D seismic data example from offshore Australia. We found that water injection at high pore pressure may mechanically weaken the poorly consolidated reservoir sands in a nonelastic manner, allowing us to explain observed 4D seismic signals that are larger than can be predicted by elastic theory fits to the core data. A comparison of our new model with the observed 4D seismic response around a large water injector suggested a significant mechanical weakening of the reservoir rock, consistent with a decrease in the effective grain contact cement from 2.5% at the time/pressure of the preinjection baseline survey, to 0.75% at the time/pressure of the monitor survey. This approach may enable more accurate interpretations and future predictions of the 4D signal for subsequent monitor surveys and improve 4D feasibility and interpretation studies in other reservoirs with geomechanically similar rocks.

Geophysics ◽  
2005 ◽  
Vol 70 (3) ◽  
pp. O1-O11 ◽  
Author(s):  
Alexey Stovas ◽  
Martin Landrø

We investigate how seismic anisotropy influences our ability to distinguish between various production-related effects from time-lapse seismic data. Based on rock physics models and ultrasonic core measurements, we estimate variations in PP and PS reflectivity at the top reservoir interface for fluid saturation and pore pressure changes. The tested scenarios include isotropic shale, weak anisotropic shale, and highly anisotropic shale layers overlaying either an isotropic reservoir sand layer or a weak anisotropic sand layer. We find that, for transverse isotropic media with a vertical symmetry axis (TIV), the effect of weak anisotropy in the cap rock does not lead to significant errors in, for instance, the simultaneous determination of pore-pressure and fluid-saturation changes. On the other hand, changes in seismic anisotropy within the reservoir rock (caused by, for instance, increased fracturing) might be detectable from time-lapse seismic data. A new method using exact expressions for PP and PS reflectivity, including TIV anisotropy, is used to determine pressure and saturation changes over production time. This method is assumed to be more accurate than previous methods.


2021 ◽  
pp. 1-59
Author(s):  
Marwa Hussein ◽  
Robert R. Stewart ◽  
Deborah Sacrey ◽  
David H. Johnston ◽  
Jonny Wu

Time-lapse (4D) seismic analysis plays a vital role in reservoir management and reservoir simulation model updates. However, 4D seismic data are subject to interference and tuning effects. Being able to resolve and monitor thin reservoirs of different quality can aid in optimizing infill drilling or locating bypassed hydrocarbons. Using 4D seismic data from the Maui field in the offshore Taranaki basin of New Zealand, we generate typical seismic attributes sensitive to reservoir thickness and rock properties. We find that spectral instantaneous attributes extracted from time-lapse seismic data illuminate more detailed reservoir features compared to those same attributes computed on broadband seismic data. We develop an unsupervised machine learning workflow that enables us to combine eight spectral instantaneous seismic attributes into single classification volumes for the baseline and monitor surveys using self-organizing maps (SOM). Changes in the SOM natural clusters between the baseline and monitor surveys suggest production-related changes that are caused primarily by water replacing gas as the reservoir is being swept under a strong water drive. The classification volumes also facilitate monitoring water saturation changes within thin reservoirs (ranging from very good to poor quality) as well as illuminating thin baffles. Thus, these SOM classification volumes show internal reservoir heterogeneity that can be incorporated into reservoir simulation models. Using meaningful SOM clusters, geobodies are generated for the baseline and monitor SOM classifications. The recoverable gas reserves for those geobodies are then computed and compared to production data. The SOM classifications of the Maui 4D seismic data seems to be sensitive to water saturation change and subtle pressure depletions due to gas production under a strong water drive.


Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


SPE Journal ◽  
2010 ◽  
Vol 15 (04) ◽  
pp. 1077-1088 ◽  
Author(s):  
F.. Sedighi ◽  
K.D.. D. Stephen

Summary Seismic history matching is the process of modifying a reservoir simulation model to reproduce the observed production data in addition to information gained through time-lapse (4D) seismic data. The search for good predictions requires that many models be generated, particularly if there is an interaction between the properties that we change and their effect on the misfit to observed data. In this paper, we introduce a method of improving search efficiency by estimating such interactions and partitioning the set of unknowns into noninteracting subspaces. We use regression analysis to identify the subspaces, which are then searched separately but simultaneously with an adapted version of the quasiglobal stochastic neighborhood algorithm. We have applied this approach to the Schiehallion field, located on the UK continental shelf. The field model, supplied by the operator, contains a large number of barriers that affect flow at different times during production, and their transmissibilities are highly uncertain. We find that we can successfully represent the misfit function as a second-order polynomial dependent on changes in barrier transmissibility. First, this enables us to identify the most important barriers, and, second, we can modify their transmissibilities efficiently by searching subgroups of the parameter space. Once the regression analysis has been performed, we reduce the number of models required to find a good match by an order of magnitude. By using 4D seismic data to condition saturation and pressure changes in history matching effectively, we have gained a greater insight into reservoir behavior and have been able to predict flow more accurately with an efficient inversion tool. We can now determine unswept areas and make better business decisions.


2020 ◽  
Author(s):  
Malin Waage ◽  
Stefan Bünz ◽  
Kate Waghorn ◽  
Sunny Singhorha ◽  
Pavel Serov

<p>The transition from gas hydrate to gas-bearing sediments at the base of the hydrate stability zone (BHSZ) is commonly identified on seismic data as a bottom-simulating reflection (BSR). At this boundary, phase transitions driven by thermal effects, pressure alternations, and gas and water flux exist. Sedimentation, erosion, subsidence, uplift, variations in bottom water temperature or heat flow cause changes in marine gas hydrate stability leading to expansion or reduction of gas hydrate accumulations and associated free gas accumulations. Pressure build-up in gas accumulations trapped beneath the hydrate layer may eventually lead to fracturing of hydrate-bearing sediments that enables advection of fluids into the hydrate layer and potentially seabed seepage. Depletion of gas along zones of weakness creates hydraulic gradients in the free gas zone where gas is forced to migrate along the lower hydrate boundary towards these weakness zones. However, due to lack of “real time” data, the magnitude and timescales of processes at the gas hydrate – gas contact zone remains largely unknown. Here we show results of high resolution 4D seismic surveys at a prominent Arctic gas hydrate accumulation – Vestnesa ridge - capturing dynamics of the gas hydrate and free gas accumulations over 5 years. The 4D time-lapse seismic method has the potential to identify and monitor fluid movement in the subsurface over certain time intervals. Although conventional 4D seismic has a long history of application to monitor fluid changes in petroleum reservoirs, high-resolution seismic data (20-300 Hz) as a tool for 4D fluid monitoring of natural geological processes has been recently identified.<br><br>Our 4D data set consists of four high-resolution P-Cable 3D seismic surveys acquired between 2012 and 2017 in the eastern segment of Vestnesa Ridge. Vestnesa Ridge has an active fluid and gas hydrate system in a contourite drift setting near the Knipovich Ridge offshore W-Svalbard. Large gas flares, ~800 m tall rise from seafloor pockmarks (~700 m diameter) at the ridge axis. Beneath the pockmarks, gas chimneys pierce the hydrate stability zone, and a strong, widespread BSR occurs at depth of 160-180 m bsf. 4D seismic datasets reveal changes in subsurface fluid distribution near the BHSZ on Vestnesa Ridge. In particular, the amplitude along the BSR reflection appears to change across surveys. Disappearance of bright reflections suggest that gas-rich fluids have escaped the free gas zone and possibly migrated into the hydrate stability zone and contributed to a gas hydrate accumulation, or alternatively, migrated laterally along the BSR. Appearance of bright reflection might also indicate lateral migration, ongoing microbial or thermogenic gas supply or be related to other phase transitions. We document that faults, chimneys and lithology constrain these anomalies imposing yet another control on vertical and lateral gas migration and accumulation. These time-lapse differences suggest that (1) we can resolve fluid changes on a year-year timescale in this natural seepage system using high-resolution P-Cable data and (2) that fluids accumulate at, migrate to and migrate from the BHSZ over the same time scale.</p>


Geophysics ◽  
2005 ◽  
Vol 70 (6) ◽  
pp. O39-O50 ◽  
Author(s):  
Øyvind Kvam ◽  
Martin Landrø

In an exploration context, pore-pressure prediction from seismic data relies on the fact that seismic velocities depend on pore pressure. Conventional velocity analysis is a tool that may form the basis for obtaining interval velocities for this purpose. However, velocity analysis is inaccurate, and in this paper we focus on the possibilities and limitations of using velocity analysis for pore-pressure prediction. A time-lapse seismic data set from a segment that has undergone a pore-pressure increase of 5 to 7 MPa between the two surveys is analyzed for velocity changes using detailed velocity analysis. A synthetic time-lapse survey is used to test the sensitivity of the velocity analysis with respect to noise. The analysis shows that the pore-pressure increase cannot be detected by conventional velocity analysis because the uncertainty is much greater than the expected velocity change for a reservoir of the given thickness and burial depth. Finally, by applying amplitude-variation-with-offset (AVO) analysis to the same data, we demonstrate that seismic amplitude analysis may yield more precise information about velocity changes than velocity analysis.


2015 ◽  
Vol 55 (2) ◽  
pp. 412 ◽  
Author(s):  
Ramses Meza ◽  
Guy Duncan ◽  
Konstantinos Kostas ◽  
Stanislav Kuzmin ◽  
Mauricio Florez ◽  
...  

Time-lapse dedicated 3D seismic surveys were acquired across the Pyrenees oil and gas field, Exmouth Sub-basin to map production-induced changes in the reservoir. Rock-physics 4D modelling showed that changes in pore pressure and fluid saturation would produce a time-lapse seismic response of sufficient magnitude, in both amplitude and velocity, to overcome time-lapse noise. The dominant observed effect is associated with gas coming out of solution. The reservoir simulation model forecasted that reservoir depletion would cause gas breakout that would impact the elastic properties of the reservoir. The effect of gas breakout can be clearly observed on the 4D seismic data as a change in both amplitude and velocity. The analysis of the seismic datasets was proven to be enhanced significantly by using inversion methodologies. These included a band-limited extended-elastic impedance (EEI) approach, as well as simultaneous 4D elastic inversion. These datasets, combined with rock physics modelling, enabled quantitative interpretation of the change in 4D seismic response which was a key tool for assisting with the infill well placement and field development strategy.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. B243-B252 ◽  
Author(s):  
Peter Bergmann ◽  
Artem Kashubin ◽  
Monika Ivandic ◽  
Stefan Lüth ◽  
Christopher Juhlin

A method for static correction of time-lapse differences in reflection arrival times of time-lapse prestack seismic data is presented. These arrival-time differences are typically caused by changes in the near-surface velocities between the acquisitions and had a detrimental impact on time-lapse seismic imaging. Trace-to-trace time shifts of the data sets from different vintages are determined by crosscorrelations. The time shifts are decomposed in a surface-consistent manner, which yields static corrections that tie the repeat data to the baseline data. Hence, this approach implies that new refraction static corrections for the repeat data sets are unnecessary. The approach is demonstrated on a 4D seismic data set from the Ketzin [Formula: see text] pilot storage site, Germany, and is compared with the result of an initial processing that was based on separate refraction static corrections. It is shown that the time-lapse difference static correction approach reduces 4D noise more effectively than separate refraction static corrections and is significantly less labor intensive.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1969-1983 ◽  
Author(s):  
M. M. Saggaf ◽  
M. Nafi Toksöz ◽  
H. M. Mustafa

The performance of traditional back‐propagation networks for reservoir characterization in production settings has been inconsistent due to their nonmonotonous generalization, which necessitates extensive tweaking of their parameters in order to achieve satisfactory results and avoid overfitting the data. This makes the accuracy of these networks sensitive to the selection of the network parameters. We present an approach to estimate the reservoir rock properties from seismic data through the use of regularized back propagation networks that have inherent smoothness characteristics. This approach alleviates the nonmonotonous generalization problem associated with traditional networks and helps to avoid overfitting the data. We apply the approach to a 3D seismic survey in the Shedgum area of Ghawar field, Saudi Arabia, to estimate the reservoir porosity distribution of the Arab‐D zone, and we contrast the accuracy of our approach with that of traditional back‐propagation networks through cross‐validation tests. The results of these tests indicate that the accuracy of our approach remains consistent as the network parameters are varied, whereas that of the traditional network deteriorates as soon as deviations from the optimal parameters occur. The approach we present thus leads to more robust estimates of the reservoir properties and requires little or no tweaking of the network parameters to achieve optimal results.


Sign in / Sign up

Export Citation Format

Share Document