scholarly journals Determining geophysical responses from burials in graveyards and cemeteries

Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. B245-B255 ◽  
Author(s):  
Henry C. Dick ◽  
Jamie K. Pringle ◽  
Kristopher D. Wisniewski ◽  
Jon Goodwin ◽  
Robert van der Putten ◽  
...  

Graveyards and cemeteries around the world are increasingly designated as full. Therefore, there is a requirement to identify vacant spaces for new burials or to identify existing ones to exhume and then reinter if necessary. Geophysical methods offer a potentially noninvasive target detection solution; however, there has been limited research to identify optimal geophysical detection methods against burial age. We have collected multifrequency (225–900 MHz) ground-penetrating radar (GPR), electrical resistivity, and magnetic susceptibility surface data over known graves with different burial ages and soil types in three UK church graveyards. Results indicate that progressively older burials are more difficult to detect, but this decrease is not linear and is site specific. Medium- to high-frequency GPR and magnetic susceptibility was optimal in clay-rich soils, medium- to high-frequency GPR and electrical resistivity in sandy soils, and electrical resistivity and low-frequency GPR in coarse sand and pebbly soils, respectively. A multigeophysical technique approach should be used by survey practitioners where grave locations are not known to maximize target detection success. Grave soil and grave cuts are important grave position indicators. Grave headstones were not always located where burials were located. We have determined the value of these techniques in grave detection and could potentially date burials from their geophysical responses.

2014 ◽  
Vol 57 (1) ◽  
Author(s):  
Marco Marchetti ◽  
Vincenzo Sapia ◽  
Adriano Garello ◽  
Donatella De Rita ◽  
Alessandra Venuti

<p>The Vulci archeological site was object of interest by the Soprintendenza ai beni culturali dell’Etruria meridionale (Italian government department responsible for southern Etruria’s cultural heritage) since the beginning of the 20th century. In 2001, the Ministero dei Beni Culturali (Italian ministry of cultural heritage) along with the local authorities, opened a natural-archeological park. In this area, it lies most of the ancient Etruscan city of Velch (today known by its Latin name, Vulci) including the Osteria Necropolis that is the object of this study. Recently, new archaeological excavations were made and the local authorities needed major geological information about the volcanic lithotypes where the Etruscans used to build their necropolis. The aim of this study is to define the geological and geophysical characteristics of the rock lithotypes present in the Vulci park. For this purpose, a geological map of the area (1:10000) has been realized. Moreover, two different geophysical methods were applied: measurements of magnetic susceptibility and electrical resistivity tomography. Magnetic susceptibility analyses clearly identify magnetic contrasts between different lithotypes; the characteristics of the pyroclastic flow that originated the Sorano unit 2 and its vertical facies variations are well recorded by this parameter that along with lithostratigraphic observations provides information about the depositional conditions. Two electrical resistivity tomographies were performed, which show the Sorano unit 2 thickness to be of c. 7 m with resistivity values ranging from 200 to 400 Ω·m. This kind of multidisciplinary approach resulted to be suitable to study this type of archaeological sites, revealing that areas characterized by a relevant thickness and wide areal extension of volcanic lithotypes can be a potential site where Etruscans might have excavated their necropolis.</p>


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 664 ◽  
Author(s):  
David Zumr ◽  
Václav David ◽  
Josef Krása ◽  
Jiří Nedvěd

Small earth dams usually lack the detailed seepage monitoring system that would provide high resolution data on changes in seepage flow. Alternative solution is monitoring of the temperature and electrical resistivity in the body of the dams. Geophysical methods are useful techniques for a non-destructive exploration of the subsurface. We have utilized the combination of electrical resistivity tomography (ERT), ground penetrating radar (GPR) and multi-depth electromagnetical conductivity meter (CMD) techniques to observe the inner structure, especially internal failures, of the historical earth-filled dams. Longitudinal and transversal profiles of four typical fishpond dams in the Czech Republic were measured within this research. The dams were constructed as early as in the 15th century, some of them went through minor reconstruction. The aim of the application of geophysical methods for investigation of old fishpond dams was to detect and localize the boundary of the dam foundation, new earth material from the reconstruction works, cone of water depression, technical objects location, potential internal erosion, cavities, inhomogeneity in the water content pattern and any other anomalies. The primary results show that the ERT is suitable to observe the dam stratification, dam foundation, bedrock below the dam and large anomalies. GPR is suitable for small objects and anomalies detection in the shallow depths.


2019 ◽  
Vol 11 (20) ◽  
pp. 2355 ◽  
Author(s):  
Benjamin Barrowes ◽  
Mikheil Prishvin ◽  
Guy Jutras ◽  
Fridon Shubitidze

The detection and classification of subsurface improvised explosive devices (IEDs) remains one of the most pressing military and civilian problems worldwide. These IEDs are often intentionally made with either very small metallic parts or less-conducting parts in order to evade low-frequency electromagnetic induction (EMI) sensors, or metal detectors, which operate at frequencies of 50 kHz or less. Recently, high-frequency electromagnetic induction (HFEMI), which extends the established EMI frequency range above 50 kHz to 20 MHz and bridges the gap between EMI and ground-penetrating radar frequencies, has shown promising results related to detecting and identifying IEDs. In this higher frequency range, less-conductive targets display signature inphase and quadrature responses similar to higher conducting targets in the LFEMI range. IED constituent parts, such as carbon rods, small pressure plates, conductivity voids, low metal content mines, and short wires respond to HFEMI but not to traditional low-frequency EMI (LFEMI). Results from recent testing over mock-ups of less-conductive IEDs or their components show distinctive HFEMI responses, suggesting that this new sensing realm could augment the detection and discrimination capability of established EMI technology. In this paper, we present results of using the HFEMI sensor over IED-like targets at the Fort AP Hill test site. We show that results agree with numerical modeling thus providing motives to incorporate sensing at these frequencies into traditional EMI and/or GPR-based sensors.


2020 ◽  
Author(s):  
remi valois ◽  
Nicole Schafer ◽  
Giulia De Pasquale ◽  
Gonzalo Navarro ◽  
Shelley MacDonell

&lt;p&gt;Rock glaciers play an important hydrological role in the semiarid Andes (SA; 27&amp;#186;-35&amp;#186;S). They cover about three times the area of uncovered glaciers and they are an important contribution to streamflow when water is needed most, especially during dry years and in the late summer months. Their characteristics such as their extension in depth and their ice content is poorly known. Here, we present a case study of one active rock glacier and periglacial inactive geoform in Estero Derecho (~30&amp;#730;S), in the upper Elqui River catchment, Chile. Three geophysical methods (ground-penetrating radar and electrical resistivity and seismic refraction tomography) were combined to detect the presence of ice and understand the internal structure of the landform. The results suggest that the combination of electrical resistivity and seismic velocity provide relevant information on ice presence and their geometry. Radargrams shows diffraction linked to boulders presence but some information regarding electromagnetic velocity could be extracted. These results strongly suggest that such landforms contain ice, are therefore important to include in future inventories and should be considered when evaluating the hydrological importance of a particular region.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. H97-H113 ◽  
Author(s):  
Diego Domenzain ◽  
John Bradford ◽  
Jodi Mead

We have developed an algorithm for joint inversion of full-waveform ground-penetrating radar (GPR) and electrical resistivity (ER) data. The GPR data are sensitive to electrical permittivity through reflectivity and velocity, and electrical conductivity through reflectivity and attenuation. The ER data are directly sensitive to the electrical conductivity. The two types of data are inherently linked through Maxwell’s equations, and we jointly invert them. Our results show that the two types of data work cooperatively to effectively regularize each other while honoring the physics of the geophysical methods. We first compute sensitivity updates separately for the GPR and ER data using the adjoint method, and then we sum these updates to account for both types of sensitivities. The sensitivities are added with the paradigm of letting both data types always contribute to our inversion in proportion to how well their respective objective functions are being resolved in each iteration. Our algorithm makes no assumptions of the subsurface geometry nor the structural similarities between the parameters with the caveat of needing a good initial model. We find that our joint inversion outperforms the GPR and ER separate inversions, and we determine that GPR effectively supports ER in regions of low conductivity, whereas ER supports GPR in regions with strong attenuation.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. JM13-JM26
Author(s):  
Chuandong Jiang ◽  
Jan Igel ◽  
Raphael Dlugosch ◽  
Mike Müller-Petke ◽  
Thomas Günther ◽  
...  

Geophysical methods can characterize aquifer systems noninvasively and are particularly helpful to image the complex depositional architecture of the subsurface. Among these, ground-penetrating radar (GPR) is an effective tool for detailed investigations of shallow subsurface geometry, but it provides only limited information on hydraulic properties. Magnetic resonance tomography (MRT) provides parameters such as water content (porosity) and relaxation time/hydraulic conductivity, but it suffers from resolution limits. Furthermore, it requires knowledge of subsurface electrical resistivity, which can be obtained by electrical resistivity tomography (ERT) also suffering from resolution limits. To overcome the limitations in resolution, we have incorporated GPR reflectors as structural information into the ERT and MRT data inversion. We test the methodology on a synthetic example and find improved imaging properties compared to standard inversion, particularly at greater depths, where the resolution is limited. We apply the methodology to a test site that is characterized by a complex depositional architecture. The Quaternary deposits consist of interbedded meltwater deposits (aquifers) and till (aquitards), overlain by aeolian deposits. To image the subsurface depositional architecture in three dimensions, a [Formula: see text] area was surveyed by GPR. The use of GPR constraints clearly improves the resolution and zonation of the subsurface image, which is validated by drill-core analyses. We develop a workflow to combine GPR, MRT, and ERT, leading the way to high-resolution hydrogeologic models that can be used for groundwater studies.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2835
Author(s):  
Yawar Hussain ◽  
Rogerio Uagoda ◽  
Welitom Borges ◽  
Renato Prado ◽  
Omar Hamza ◽  
...  

Reliable characterization of the karst system is essential for risk assessment where many associated hazards (e.g., cover-collapse dolines and groundwater pollution) can affect natural and built environments, threatening public safety. The use of multiple geophysical approaches may offer an improved way to investigate such cover-collapse sinkholes and aid in geohazard risk assessments. In this paper, covered karst, which has two types of shallow caves (vadose and fluvial) located in Tarimba (Goias, Brazil), was investigated using various geophysical methods to evaluate their efficiency in the delineation of the geometry of sediments filled sinkhole. The methods used for the investigation were Electrical Resistivity Tomography (ERT), Seismic Refraction Survey (SRS), Seismic Refraction Tomography (SRT) and the Very Low Frequency Electromagnetic (VLF-EM) method. The study developed several (2D) sections of the measured physical properties, including P-wave velocity and electrical resistivity, as well as the induced current (because of local bodies). For the analysis and processing of the data obtained from these methods, the following approaches were adopted: ERT inversion using a least-square scheme, Karous-Hjelt filter for VLF-EM data and time-distance curves and Vp cross-sections for the SRS. The refraction data analysis showed three-layered stratigraphy topsoil, claystone and carbonate bedrock, respectively. The findings obtained from ERT (three-layered stratigraphy and sediment-filled doline), as well as VLF-EM (fractured or filled caves as a positive anomaly), were found to be consistent with the actual field conditions. However, the SRS and SRT methods did not show the collapsed material and reached the limited the depth because of shorter profile lengths. The study provides a reasonable basis for the development of an integrated geophysical approach for site characterization of karst systems, particularly the perched tank and collapse doline.


2016 ◽  
Vol 47 (3) ◽  
pp. 1355
Author(s):  
G. Vargemezis ◽  
N. Diamanti ◽  
I. Fikos ◽  
A. Stampolidis ◽  
Th. Makedon ◽  
...  

Ground penetrating radar (GPR) and electrical resistivity tomography (ERT) surveys have been carried out in the city centre of Thessaloniki (N. Greece), for investigating possible locations of buried building foundations. Geophysical survey has been chosen as a non-destructive investigation method since the area is currently used as a car parking and it is covered by asphalt. The geoelectrical sections derived from ERT data in combination with the GPR profiles provided a broad view of the  subsurface.  Regarding  ERT,  high  resistivity  values  can  be  related  to  buried building remains, while lower resistivity values are more related to the surrounding geological materials. GPR surveying can also indicate man-made structures buried in the ground. Even though the two geophysical methods are affected in different ways by the subsurface conditions, the processed underground images from both techniques revealed great similarity. High resistivity anomalies and distinct GPR signals were observed in certain locations of the area under investigation, which are attributed to buried building foundations as well as the geological structure of the area.


Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Alvin K. Benson ◽  
Kelly L. Payne ◽  
Melissa A. Stubben

Geophysical methods can be helpful in mapping areas of contaminated soil and groundwater. Electrical resistivity and very low‐frequency electromagnetic induction (VLF) surveys were carried out at a site of shallow hydrocarbon contamination in Utah County, Utah. Previously installed monitoring wells facilitated analysis of water chemistry to enhance interpretation of the geophysical data. The electrical resistivity and VLF data correlate well, and vertical cross‐sections and contour maps generated from these data helped map the contaminant plume, which was delineated as an area of high interpreted resistivities.


Sign in / Sign up

Export Citation Format

Share Document