scholarly journals Structure label prediction using similarity-based retrieval and weakly supervised label mapping

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. V67-V79 ◽  
Author(s):  
Yazeed Alaudah ◽  
Motaz Alfarraj ◽  
Ghassan AlRegib

Recently, there has been significant interest in various supervised machine learning techniques that can help reduce the time and effort consumed by manual interpretation workflows. However, most successful supervised machine learning algorithms require huge amounts of annotated training data. Obtaining these labels for large seismic volumes is a very time-consuming and laborious task. We have addressed this problem by presenting a weakly supervised approach for predicting the labels of various seismic structures. By having an interpreter select a very small number of exemplar images for every class of subsurface structures, we use a novel similarity-based retrieval technique to extract thousands of images that contain similar subsurface structures from the seismic volume. By assuming that similar images belong to the same class, we obtain thousands of image-level labels for these images; we validate this assumption. We have evaluated a novel weakly supervised algorithm for mapping these rough image-level labels into more accurate pixel-level labels that localize the different subsurface structures within the image. This approach dramatically simplifies the process of obtaining labeled data for training supervised machine learning algorithms on seismic interpretation tasks. Using our method, we generate thousands of automatically labeled images from the Netherlands Offshore F3 block with reasonably accurate pixel-level labels. We believe that this work will allow for more advances in machine learning-enabled seismic interpretation.

Author(s):  
M. M. Ata ◽  
K. M. Elgamily ◽  
M. A. Mohamed

The presented paper proposes an algorithm for palmprint recognition using seven different machine learning algorithms. First of all, we have proposed a region of interest (ROI) extraction methodology which is a two key points technique. Secondly, we have performed some image enhancement techniques such as edge detection and morphological operations in order to make the ROI image more suitable for the Hough transform. In addition, we have applied the Hough transform in order to extract all the possible principle lines on the ROI images. We have extracted the most salient morphological features of those lines; slope and length. Furthermore, we have applied the invariant moments algorithm in order to produce 7 appropriate hues of interest. Finally, after performing a complete hybrid feature vectors, we have applied different machine learning algorithms in order to recognize palmprints effectively. Recognition accuracy have been tested by calculating precision, sensitivity, specificity, accuracy, dice, Jaccard coefficients, correlation coefficients, and training time. Seven different supervised machine learning algorithms have been implemented and utilized. The effect of forming the proposed hybrid feature vectors between Hough transform and Invariant moment have been utilized and tested. Experimental results show that the feed forward neural network with back propagation has achieved about 99.99% recognition accuracy among all tested machine learning techniques.


The advancement in cyber-attack technologies have ushered in various new attacks which are difficult to detect using traditional intrusion detection systems (IDS).Existing IDS are trained to detect known patterns because of which newer attacks bypass the current IDS and go undetected. In this paper, a two level framework is proposed which can be used to detect unknown new attacks using machine learning techniques. In the first level the known types of classes for attacks are determined using supervised machine learning algorithms such as Support Vector Machine (SVM) and Neural networks (NN). The second level uses unsupervised machine learning algorithms such as K-means. The experimentation is carried out with four models with NSL- KDD dataset in Openstack cloud environment. The Model with Support Vector Machine for supervised machine learning, Gradual Feature Reduction (GFR) for feature selection and K-means for unsupervised algorithm provided the optimum efficiency of 94.56 %.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Conner Sharpe ◽  
Tyler Wiest ◽  
Pingfeng Wang ◽  
Carolyn Conner Seepersad

Abstract Supervised machine learning techniques have proven to be effective tools for engineering design exploration and optimization applications, in which they are especially useful for mapping promising or feasible regions of the design space. The design space mappings can be used to inform early-stage design exploration, provide reliability assessments, and aid convergence in multiobjective or multilevel problems that require collaborative design teams. However, the accuracy of the mappings can vary based on problem factors such as the number of design variables, presence of discrete variables, multimodality of the underlying response function, and amount of training data available. Additionally, there are several useful machine learning algorithms available, and each has its own set of algorithmic hyperparameters that significantly affect accuracy and computational expense. This work elucidates the use of machine learning for engineering design exploration and optimization problems by investigating the performance of popular classification algorithms on a variety of example engineering optimization problems. The results are synthesized into a set of observations to provide engineers with intuition for applying these techniques to their own problems in the future, as well as recommendations based on problem type to aid engineers in algorithm selection and utilization.


Author(s):  
James A. Tallman ◽  
Michal Osusky ◽  
Nick Magina ◽  
Evan Sewall

Abstract This paper provides an assessment of three different machine learning techniques for accurately reproducing a distributed temperature prediction of a high-pressure turbine airfoil. A three-dimensional Finite Element Analysis thermal model of a cooled turbine airfoil was solved repeatedly (200 instances) for various operating point settings of the corresponding gas turbine engine. The response surface created by the repeated solutions was fed into three machine learning algorithms and surrogate model representations of the FEA model’s response were generated. The machine learning algorithms investigated were a Gaussian Process, a Boosted Decision Tree, and an Artificial Neural Network. Additionally, a simple Linear Regression surrogate model was created for comparative purposes. The Artificial Neural Network model proved to be the most successful at reproducing the FEA model over the range of operating points. The mean and standard deviation differences between the FEA and the Neural Network models were 15% and 14% of a desired accuracy threshold, respectively. The Digital Thread for Design (DT4D) was used to expedite all model execution and machine learning training. A description of DT4D is also provided.


Author(s):  
Anisha M. Lal ◽  
B. Koushik Reddy ◽  
Aju D.

Machine learning can be defined as the ability of a computer to learn and solve a problem without being explicitly coded. The efficiency of the program increases with experience through the task specified. In traditional programming, the program and the input are specified to get the output, but in the case of machine learning, the targets and predictors are provided to the algorithm make the process trained. This chapter focuses on various machine learning techniques and their performance with commonly used datasets. A supervised learning algorithm consists of a target variable that is to be predicted from a given set of predictors. Using these established targets is a function that plots targets to a given set of predictors. The training process allows the system to train the unknown data and continues until the model achieves a desired level of accuracy on the training data. The supervised methods can be usually categorized as classification and regression. This chapter discourses some of the popular supervised machine learning algorithms and their performances using quotidian datasets. This chapter also discusses some of the non-linear regression techniques and some insights on deep learning with respect to object recognition.


Artificial intelligence is the technology that lets a machine mimic the thinking ability of a human being. Machine learning is the subset of AI, that makes this machine exhibit human behavior by making it learn from the known data, without the need of explicitly programming it. The health care sector has adopted this technology, for the development of medical procedures, maintaining huge patient’s records, assist physicians in the prediction, detection, and treatment of diseases and many more. In this paper, a comparative study of six supervised machine learning algorithms namely Logistic Regression(LR),support vector machine(SVM),Decision Tree(DT).Random Forest(RF),k-nearest neighbor(k-NN),Naive Bayes (NB) are made for the classification and prediction of diseases. Result shows out of compared supervised learning algorithms here, logistic regression is performing best with an accuracy of 81.4 % and the least performing is k-NN with just an accuracy of 69.01% in the classification and prediction of diseases.


2021 ◽  
Vol 5 (2) ◽  
pp. 66-74
Author(s):  
Hezha M.Tareq Abdulhadi ◽  
Hardi Sabah Talabani

Thoracic surgery refers to the information gathered for the patients who have to suffer from lung cancer. Various machine learning techniques were employed in post-operative life expectancy to predict lung cancer patients. In this study, we have used the most famous and influential supervised machine learning algorithms, which are J48, Naïve Bayes, Multilayer Perceptron, and Random Forest (RF). Then, two ranker feature selections, information gain and gain ratio, were used on the thoracic surgery dataset to examine and explore the effect of used ranker feature selections on the machine learning classifiers. The dataset was collected from the Wroclaw University in UCI repository website. We have done two experiments to show the performances of the supervised classifiers on the dataset with and without employing the ranker feature selection. The obtained results with the ranker feature selections showed that J48, NB, and MLP’s accuracy improved, whereas RF accuracy decreased and support vector machine remained stable.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Gokcen Cilingir ◽  
Shira L. Broschat

Supervised machine learning algorithms are used by life scientists for a variety of objectives. Expert-curated public gene and protein databases are major resources for gathering data to train these algorithms. While these data resources are continuously updated, generally, these updates are not incorporated into published machine learning algorithms which thereby can become outdated soon after their introduction. In this paper, we propose a new model of operation for supervised machine learning algorithms that learn from genomic data. By defining these algorithms in a pipeline in which the training data gathering procedure and the learning process are automated, one can create a system that generates a classifier or predictor using information available from public resources. The proposed model is explained using three case studies on SignalP, MemLoci, and ApicoAP in which existing machine learning models are utilized in pipelines. Given that the vast majority of the procedures described for gathering training data can easily be automated, it is possible to transform valuable machine learning algorithms into self-evolving learners that benefit from the ever-changing data available for gene products and to develop new machine learning algorithms that are similarly capable.


2020 ◽  
Author(s):  
R. Suganya ◽  
R.Arunadevi ◽  
Seyed M.Buhari

Abstract Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first identified in December 2019 in Wuhan, the capital of China’s Hubei province. The objective of this research is to propose a forecasting model using the COVID-19 available dataset from top affected regions across the world using machine learning algorithms. Machine Learning algorithms help us achieve this objective. Regression models are one of the supervised machine learning techniques to classify large-scale data. This research aims to apply Multivariate Linear Regression to predict the number of confirmed and death COVID-19 cases for a span of one and two weeks. The experimental results explain 99\% variability in prediction with the R-squared statistics scores of 0.992. The algorithms are evaluated using the error matrix such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and accuracy for top affected regions across the world.


Sign in / Sign up

Export Citation Format

Share Document