scholarly journals Comparative Study of Supervised Machine Learning Algorithms on Thoracic Surgery Patients based on Ranker Feature Algorithms

2021 ◽  
Vol 5 (2) ◽  
pp. 66-74
Author(s):  
Hezha M.Tareq Abdulhadi ◽  
Hardi Sabah Talabani

Thoracic surgery refers to the information gathered for the patients who have to suffer from lung cancer. Various machine learning techniques were employed in post-operative life expectancy to predict lung cancer patients. In this study, we have used the most famous and influential supervised machine learning algorithms, which are J48, Naïve Bayes, Multilayer Perceptron, and Random Forest (RF). Then, two ranker feature selections, information gain and gain ratio, were used on the thoracic surgery dataset to examine and explore the effect of used ranker feature selections on the machine learning classifiers. The dataset was collected from the Wroclaw University in UCI repository website. We have done two experiments to show the performances of the supervised classifiers on the dataset with and without employing the ranker feature selection. The obtained results with the ranker feature selections showed that J48, NB, and MLP’s accuracy improved, whereas RF accuracy decreased and support vector machine remained stable.

The advancement in cyber-attack technologies have ushered in various new attacks which are difficult to detect using traditional intrusion detection systems (IDS).Existing IDS are trained to detect known patterns because of which newer attacks bypass the current IDS and go undetected. In this paper, a two level framework is proposed which can be used to detect unknown new attacks using machine learning techniques. In the first level the known types of classes for attacks are determined using supervised machine learning algorithms such as Support Vector Machine (SVM) and Neural networks (NN). The second level uses unsupervised machine learning algorithms such as K-means. The experimentation is carried out with four models with NSL- KDD dataset in Openstack cloud environment. The Model with Support Vector Machine for supervised machine learning, Gradual Feature Reduction (GFR) for feature selection and K-means for unsupervised algorithm provided the optimum efficiency of 94.56 %.


Artificial intelligence is the technology that lets a machine mimic the thinking ability of a human being. Machine learning is the subset of AI, that makes this machine exhibit human behavior by making it learn from the known data, without the need of explicitly programming it. The health care sector has adopted this technology, for the development of medical procedures, maintaining huge patient’s records, assist physicians in the prediction, detection, and treatment of diseases and many more. In this paper, a comparative study of six supervised machine learning algorithms namely Logistic Regression(LR),support vector machine(SVM),Decision Tree(DT).Random Forest(RF),k-nearest neighbor(k-NN),Naive Bayes (NB) are made for the classification and prediction of diseases. Result shows out of compared supervised learning algorithms here, logistic regression is performing best with an accuracy of 81.4 % and the least performing is k-NN with just an accuracy of 69.01% in the classification and prediction of diseases.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


Author(s):  
M. M. Ata ◽  
K. M. Elgamily ◽  
M. A. Mohamed

The presented paper proposes an algorithm for palmprint recognition using seven different machine learning algorithms. First of all, we have proposed a region of interest (ROI) extraction methodology which is a two key points technique. Secondly, we have performed some image enhancement techniques such as edge detection and morphological operations in order to make the ROI image more suitable for the Hough transform. In addition, we have applied the Hough transform in order to extract all the possible principle lines on the ROI images. We have extracted the most salient morphological features of those lines; slope and length. Furthermore, we have applied the invariant moments algorithm in order to produce 7 appropriate hues of interest. Finally, after performing a complete hybrid feature vectors, we have applied different machine learning algorithms in order to recognize palmprints effectively. Recognition accuracy have been tested by calculating precision, sensitivity, specificity, accuracy, dice, Jaccard coefficients, correlation coefficients, and training time. Seven different supervised machine learning algorithms have been implemented and utilized. The effect of forming the proposed hybrid feature vectors between Hough transform and Invariant moment have been utilized and tested. Experimental results show that the feed forward neural network with back propagation has achieved about 99.99% recognition accuracy among all tested machine learning techniques.


2019 ◽  
Vol 1 (1) ◽  
pp. 384-399 ◽  
Author(s):  
Thais de Toledo ◽  
Nunzio Torrisi

The Distributed Network Protocol (DNP3) is predominately used by the electric utility industry and, consequently, in smart grids. The Peekaboo attack was created to compromise DNP3 traffic, in which a man-in-the-middle on a communication link can capture and drop selected encrypted DNP3 messages by using support vector machine learning algorithms. The communication networks of smart grids are a important part of their infrastructure, so it is of critical importance to keep this communication secure and reliable. The main contribution of this paper is to compare the use of machine learning techniques to classify messages of the same protocol exchanged in encrypted tunnels. The study considers four simulated cases of encrypted DNP3 traffic scenarios and four different supervised machine learning algorithms: Decision tree, nearest-neighbor, support vector machine, and naive Bayes. The results obtained show that it is possible to extend a Peekaboo attack over multiple substations, using a decision tree learning algorithm, and to gather significant information from a system that communicates using encrypted DNP3 traffic.


Author(s):  
Baban. U. Rindhe ◽  
Nikita Ahire ◽  
Rupali Patil ◽  
Shweta Gagare ◽  
Manisha Darade

Heart-related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need fora reliable, accurate, and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart-related diseases. Heart is the next major organ comparing to the brain which has more priority in the Human body. It pumps the blood and supplies it to all organs of the whole body. Prediction of occurrences of heart diseases in the medical field is significant work. Data analytics is useful for prediction from more information and it helps the medical center to predict various diseases. A huge amount of patient-related data is maintained on monthly basis. The stored data can be useful for the source of predicting the occurrence of future diseases. Some of the data mining and machine learning techniques are used to predict heart diseases, such as Artificial Neural Network (ANN), Random Forest,and Support Vector Machine (SVM).Prediction and diagnosingof heart disease become a challenging factor faced by doctors and hospitals both in India and abroad. To reduce the large scale of deaths from heart diseases, a quick and efficient detection technique is to be discovered. Data mining techniques and machine learning algorithms play a very important role in this area. The researchers accelerating their research works to develop software with thehelp of machine learning algorithms which can help doctors to decide both prediction and diagnosing of heart disease. The main objective of this research project is to predict the heart disease of a patient using machine learning algorithms.


2018 ◽  
Vol 3 (1) ◽  
pp. 29 ◽  
Author(s):  
S M Shamim ◽  
Mohammad Badrul Alam Miah ◽  
Angona Sarker ◽  
Masud Rana ◽  
Abdullah Al Jobair

Handwritten character recognition is one of the practically important issues in pattern recognition applications. The applications of digit recognition include in postal mail sorting, bank check processing, form data entry, etc. The main problem lies within the ability on developing an efficient algorithm that can recognize hand written digits, which is submitted by users by the way of a scanner, tablet, and other digital devices. This paper presents an approach to off-line handwritten digit recognition based on different machine learning techniques. The main objective of this paper is to ensure the effectiveness and reliability of the approached recognition of handwritten digits. Several machines learning algorithms (i.e. Multilayer Perceptron, Support Vector Machine, Naïve Bayes, Bayes Net, Random Forest, J48, and Random Tree) have been used for the recognition of digits using WEKA. The experimental results showed that the highest accuracy was obtained by Multilayer Perceptron with the value of 90.37%.


Author(s):  
Christian Knaak ◽  
Moritz Kröger ◽  
Frederic Schulze ◽  
Peter Abels ◽  
Arnold Gillner

An effective process monitoring strategy is a requirement for meeting the challenges posed by increasingly complex products and manufacturing processes. To address these needs, this study investigates a comprehensive scheme based on classical machine learning methods, deep learning algorithms, and feature extraction and selection techniques. In a first step, a novel deep learning architecture based on convolutional neural networks (CNN) and gated recurrent units (GRU) is introduced to predict the local weld quality based on mid-wave infrared (MWIR) and near-infrared (NIR) image data. The developed technology is used to discover critical welding defects including lack of fusion (false friends), sagging and lack of penetration, and geometric deviations of the weld seam. Additional work is conducted to investigate the significance of various geometrical, statistical, and spatio-temporal features extracted from the keyhole and weld pool regions. Furthermore, the performance of the proposed deep learning architecture is compared to that of classical supervised machine learning algorithms, such as multi-layer perceptron (MLP), logistic regression (LogReg), support vector machines (SVM), decision trees (DT), random forest (RF) and k-Nearest Neighbors (kNN). Optimal hyperparameters for each algorithm are determined by an extensive grid search. Ultimately, the three best classification models are combined into an ensemble classifier that yields the highest detection rates and achieves the most robust estimation of welding defects among all classifiers studied, which is validated on previously unknown welding trials.


2021 ◽  
Author(s):  
Rakesh Kumar Saroj ◽  
Pawan Kumar Yadav ◽  
Rajneesh Singh ◽  
Obvious Nchimunya Chilyabanyama

Abstract Background: The death rate of under-five children in India declined last few decades, but few bigger states have poor performance. This is a matter of serious concern for the child's health as well as social development. Nowadays, machine learning techniques play a crucial role in the smart health care system to capture the hidden factors and patterns of outcomes. In this paper, we used machine learning techniques to predict the important factors of under-five mortality.This study aims to explore the importance of machine learning techniques to predict under-five mortality and to find the important factors that cause under-five mortality.The data was taken from the National Family Health Survey-IV of Uttar Pradesh. We used four machine learning techniques like decision tree, support vector machine, random forest, and logistic regression to predict under-five mortality factors and model accuracy of each model. We have also used information gain to rank to know the important variables for accurate predictions in under-five mortality data.Result: Random Forest (RF) predicts the child mortality factors with the highest accuracy of 97.5 %, and the number of living children, births in the last five years, educational level, birth order, total children ever born, currently breastfeeding, and size of child at birth that identifying as essential factors for under-five mortality.Conclusion: The study focuses on machine learning techniques to predict and identify important factors for under-five mortality. The random forest model provides an excellent predictive result for estimating the risk factors of under-five mortality. Based on the resulting outcome, policymakers can make policies and plans to reduce under-five mortality.


2021 ◽  
Vol 8 (1) ◽  
pp. 30-35
Author(s):  
Jayalakshmi R ◽  
Savitha Devi M

Agriculture sector is recognized as the backbone of the Indian economy that plays a crucial role in the growth of the nation’s economy. It imparts on weather and other environmental aspects. Some of the factors on which agriculture is reliant are Soil, climate, flooding, fertilizers, temperature, precipitation, crops, insecticides, and herb. The soil fertility is dependent on these factors and hence difficult to predict. However, the Agriculture sector in India is facing the severe problem of increasing crop productivity. Farmers lack the essential knowledge of nutrient content of the soil, selection of crop best suited for the soil and they also lack efficient methods for predicting crop well in advance so that appropriate methods have been used to improve crop productivity. This paper presents different Supervised Machine Learning Algorithms such as Decision tree, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) to predict the fertility of soil based on macro-nutrients and micro-nutrients status found in the dataset. Supervised Machine Learning algorithms are applied on the training dataset and are tested with the test dataset, and the implementation of these algorithms is done using R Tool. The performance analysis of these algorithms is done using different evaluation metrics like mean absolute error, cross-validation, and accuracy. Result analysis shows that the Decision tree is produced the best accuracy of 99% with a very less mean square error (MSE) rate.


Sign in / Sign up

Export Citation Format

Share Document