Ultra-low frequency AVA inversion of plane-wave primary reflection seismograms

Geophysics ◽  
2021 ◽  
pp. 1-63
Author(s):  
Lasse Amundsen ◽  
Bjørn Ursin

An amplitude versus angle (AVA) inversion method is presented for estimating density and velocities of a stratified elastic medium from reflection seismograms in the intercept time-horizontal slowness domain. The elastic medium parameters are assumed to vary continuously with depth. The seismograms are Green’s function pre-critical incidence primary P-wave reflections of time length T assumed to obey differential equations of a model for elastic primary P-wave back-scattering, similar to seismograms representing the first term in the well-known Bremmer series/WKBJ iterative solution model. A relation is found between plane-wave Green’s function seismograms at each horizontal slowness and the medium properties in time. The Green’s function seismograms after NMO-correction are directly inverted for the medium parameters as function of zero-offset traveltime. It is documented theoretically and verified numerically that the signal at the fundamental frequency f=1/ T must be present in the seismograms for the AVA method to provide the parameter trends of the elastic medium, implying that ultra-low frequencies <1 Hz for T >1 s must be generated and recorded. Noise in the seismograms at ultra-low frequencies is not considered since the theoretical AVA model does not handle microseisms that would be measured in real data. The main mathematical findings are illustrated by using simple model seismograms.

2021 ◽  
Vol 11 (1) ◽  
pp. 95
Author(s):  
Sudarmaji Saroji ◽  
Budi Eka Nurcahya ◽  
Nivan Ramadhan Sugiantoro

<p>Numerical modeling of 2D seismic wave propagation using spectral finite element method to estimate the response of seismic waves passing through the poroelastic medium from a hydrocarbon reservoir has been carried out. A hybrid simple model of the elastic - poroelastic - elastic with a mesoscopic scale element size of about 50cm was created. Seismic waves which was in the form of the ricker function are generated on the first elastic medium, propagated into the poroelastic medium and then transmitted to the second elastic medium. Pororoelastic medium is bearing hydrocarbon fluid in the form of gas, oil or water. Vertical and horizontal component of velocity seismograms are recorded on all mediums. Seismograms which are recorded in the poroelastic and second elastic medium show the existence of slow P compressional waves following fast P compressional waves that do not appear on the seismogram of the first elastic medium. The slow P wave is generated when the fast P wave enters the interface of the elastic - poroelastic boundary, propagated in the poroelastic medium and is transmited to the second elastic medium. The curves of Vertical to horizontal spectrum ratio (VHSR) which are observed from seismograms recorded in the poroelastic and the second elastic medium show that the peak of VHSR values at low frequency correlated with the fluid of poroelastic reservoir. The highest VHSR value at the low frequency which is recorded on the seismogram is above the 2.5 Hz frequency for reservoirs containing gas and oil in the second elastic medium, while for the medium containing water is the highest VHSR value is below the 2.5 Hz frequency.</p>


Geophysics ◽  
1991 ◽  
Vol 56 (5) ◽  
pp. 664-674 ◽  
Author(s):  
F. Kormendi ◽  
M. Dietrich

We present a method for determining the elastic parameters of a horizontally stratified medium from its plane‐wave reflectivity. The nonlinear inverse problem is iteratively solved by using a generalized least‐squares formalism. The proposed method uses the (relatively) fast convergence properties of the conjugate gradient algorithm and achieves computational efficiency through analytical solutions for calculating the reference and perturbational wavefields. The solution method is implemented in the frequency‐wave slowness domain and can be readily adapted to various source‐receiver configurations. The behavior of the algorithm conforms to the predictions of generalized least‐squares inverse theory: the inversion scheme yields satisfactory results as long as the correct velocity trends are introduced in the starting model. In practice, the inversion algorithm should be applied first in the precritical region because of the strong nonlinear behavior of postcritical data with respect to velocity perturbations. The suggested inversion strategy consists of first inverting for the density and P‐wave velocity (or P‐wave impedance) by considering plane waves in the low slowness region (near‐normal angles of incidence), then in optimizing for the S‐wave velocity by progressively including contributions from the high slowness region (steep angles of incidence). Numerical experiments performed with noise‐free synthetic data prove that the proposed inversion method satisfactorialy reconstructs the elastic properties of a stratified medium from a limited set of plane‐wave components, at a reasonable computing cost.


2002 ◽  
Vol 10 (04) ◽  
pp. 445-464 ◽  
Author(s):  
MICHAEL J. BUCKINGHAM ◽  
ERIC M. GIDDENS ◽  
FERNANDO SIMONET ◽  
THOMAS R. HAHN

The sound from a light aircraft in flight is generated primarily by the propeller, which produces a sequence of harmonics in the frequency band between about 80 Hz and 1 kHz. Such an airborne sound source has potential in underwater acoustics applications, including inversion procedures for determining the wave properties of marine sediments. A series of experiments has recently been performed off the coast of La Jolla, California, in which a light aircraft was flown over a sensor station located in a shallow (approximately 15 m deep) ocean channel. The sound from the aircraft was monitored with a microphone above the sea surface, a vertical array of eight hydrophones in the water column, and two sensors, a hydrophone and a bender intended for detecting shear waves, buried 75 cm deep in the very-fine-sand sediment. The propeller harmonics were detected on all the sensors, although the s-wave was masked by the p-wave on the buried bender. Significant Doppler shifts of the order of 17%, were observed on the microphone as the aircraft approached and departed from the sensor station. Doppler shifting was also evident in the hydrophone data from the water column and the sediment, but to a lesser extent than in the atmosphere. The magnitude of the Doppler shift depends on the local speed of sound in the medium in which the sensor is located. A technique is described in which the Doppler difference frequency between aircraft approach and departure is used to determine the speed of sound at low-frequencies (80 Hz to 1 kHz) in each of the three environments, the atmosphere, the ocean and the sediment. Several experimental results are presented, including the speed of sound in the very fine sand sediment at a nominal frequency of 600 Hz, which was found from the Doppler difference frequency of the seventh propeller harmonic to be 1617 m/s.


Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1877-1885 ◽  
Author(s):  
Xin‐Quan Ma

A new prestack inversion algorithm has been developed to simultaneously estimate acoustic and shear impedances from P‐wave reflection seismic data. The algorithm uses a global optimization procedure in the form of simulated annealing. The goal of optimization is to find a global minimum of the objective function, which includes the misfit between synthetic and observed prestack seismic data. During the iterative inversion process, the acoustic and shear impedance models are randomly perturbed, and the synthetic seismic data are calculated and compared with the observed seismic data. To increase stability, constraints have been built into the inversion algorithm, using the low‐frequency impedance and background Vs/Vp models. The inversion method has been successfully applied to synthetic and field data examples to produce acoustic and shear impedances comparable to log data of similar bandwidth. The estimated acoustic and shear impedances can be combined to derive other elastic parameters, which may be used for identifying of lithology and fluid content of reservoirs.


1992 ◽  
Vol 11 (4) ◽  
pp. 114-123 ◽  
Author(s):  
Keith S. Peat

At low frequencies, only plane waves can continuously propagate along uniform ducts, but evanescent, non-planar waves arise from discontinuities in the duct cross-section. The effect of these evanescent waves can be considered as an acoustical impedance to the propagation of plane waves. It is then possible to increase the accuracy of low frequency plane-wave analysis of duct systems with cross-sectional discontinuities, by inclusion of these impedance corrections. This paper considers the derivation of the acoustical impedance at the junction of non-coaxial circular ducts, a common feature within silencer systems.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R149-R164 ◽  
Author(s):  
Sanyi Yuan ◽  
Shangxu Wang ◽  
Yaneng Luo ◽  
Wanwan Wei ◽  
Guanchao Wang

Prestack acoustic full-waveform inversion (FWI) can provide long-wavelength components of the P-wave velocity by using low frequencies and long-offset direct/diving/refracted waves, which could be simulated via a large space grid, and it is weakly sensitive to density. Poststack impedance inversion can usually quickly yield high-resolution impedance, and it is sensitive to density. Therefore, we have combined these two methods to develop an FWI-driven impedance inversion. Our method first uses FWI to obtain the long-wavelength velocity with a guaranteed overlap between the high frequencies of the velocity and the low frequencies of the poststack data. Then, the fitting rock-physics relationship between the density and the velocity is adopted to translate the FWI velocity into the low-frequency impedance. Finally, the resulting low-frequency impedance is used to construct an a priori constraint for poststack impedance inversion. The method has the ability to solve the overlap between the FWI-based converted prior impedance model and poststack data, and it can thereby yield a broadband absolute impedance result. We adopt a Marmousi II model example and a real data case to test the performances of the FWI-driven impedance inversion and indicate its advantages compared with the conventional well-driven impedance inversion that uses well logs and interpreted horizons to build the prior impedance model. The synthetic data example demonstrates that well-driven impedance inversion produces a result with a relatively large deviation to the true impedance model at complex structure zones. However, FWI-driven impedance inversion favorably recovers all interesting sediment layers at complex structure zones. The real data example illustrates that well-driven impedance inversion yields a result with a distinct footprint of the prior model created from well logs and horizons. On the other hand, we find that FWI-driven impedance inversion yields a geologically reasonable solution, which not only conforms to the time-space variation trend of the well logs, but it also reveals a basin structural-depositional evolution.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Xinpeng Pan ◽  
Guangzhi Zhang ◽  
Yian Cui

The seismic attenuation should be considered while accounting for the effect of anisotropy on the seismic wave propagating through a saturated fractured porous medium. Based on the modified linear-slip theory and anisotropic Gassmann’s equation, we derive an analytical expression for a linearized PP-wave reflection coefficient and an azimuthal attenuation elastic impedance (AAEI) equation in terms of fluid/porosity term, shear modulus, density, dry normal and tangential fracture weaknesses, and compressional (P-wave) and shear (S-wave) attenuation parameters in a weak-attenuation isotropic background rock containing one single set of vertical aligned fractures. We then propose an AAEI inversion method to characterize the characteristics of fluids and fractures using two kinds of constrained regularizations in such a fractured porous medium. The proposed approach is finally confirmed by both the synthetic and real data sets acquired over a saturated fractured porous reservoir.


2020 ◽  
pp. 1-47
Author(s):  
Yijiang Zhang ◽  
Xiaotao Wen ◽  
Dongyong Zhou ◽  
Wenhua Wang ◽  
Man Lu ◽  
...  

The reservoir fluid mobility is by definition the ratio of rock permeability to fluid viscosity. This attribute can be applied to reservoir physical property and permeability evaluation. So far, the only means of obtaining the reservoir fluid mobility over a large range of exploration areas is based on the extraction method. However, the location of high fluid mobility obtained by the extraction method is close to the reservoir interface. To obtain the fluid mobility in the middle of the reservoir, an approximate inversion method of reservoir fluid mobility from frequency-dependent seismic data is proposed. Firstly, we calculate the reservoir fluid mobility coefficient using well data according to the relationship of fluid parameters. Then, we establish an inversion equation based on the low-frequency reflection coefficient and the reservoir fluid mobility. Taking the reservoir fluid mobility coefficient calculated from well data as a priori constraint, the low-frequency model is subsequently constructed and applied with the inversion equation to obtain an inversion objective function. Next, the inversion equation is solved by the basis pursuit algorithm. Finally, the proposed reservoir fluid mobility inversion method is applied to synthetic and real data of gas-bearing reservoirs. The real data processing results show that the proposed reservoir fluid mobility inversion method can estimate the fluid mobility in the actual position of the reservoir more effectively.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. C211-C227 ◽  
Author(s):  
Xinpeng Pan ◽  
Guangzhi Zhang ◽  
Xingyao Yin

The normal-to-tangential fracture compliance ratio is usually used as a fracture fluid indicator (FFI) for fluid identification in fractured reservoirs. With a new parameterization for fracture weaknesses, we have defined a new FFI based on azimuthally anisotropic elastic impedance (EI) inversion and fractured anisotropic rock-physics models. First, we derived a new azimuthally anisotropic EI equation with a similar expression for the isotropic and anisotropic EI parts to remove the exponential correction of EI that is attributable to weak anisotropy. Then, we built a fractured anisotropic rock-physics model used for the estimation of well-log parameters for the normal and tangential fracture weaknesses, which built the initial background low-frequency trend of fracture weaknesses. Finally, based on the azimuthally anisotropic EI inversion method with the Cauchy-sparse and low-frequency information regularization, we estimated an FFI applied to fluid identification in fractured reservoirs. Tests on the synthetic and real data demonstrate that the anisotropic parameters related to fracture weaknesses can be estimated reasonably and stably and that our method appears to provide an alternative available for fluid identification in fractured reservoirs.


Geophysics ◽  
1999 ◽  
Vol 64 (1) ◽  
pp. 182-190 ◽  
Author(s):  
Yanghua Wang

Both traveltimes and amplitudes in reflection seismology are used jointly in an inversion to simultaneously invert for the interface geometry and the elastic parameters at the reflectors. The inverse problem has different physical dimensions in both data and model spaces. Practical approaches are proposed to tackle the dimensional difficulties. In using the joint inversion, which may properly take care of the structural effect, one potentially improves the estimates of the subsurface elastic parameters in the traditional analysis of amplitude variation with offset (AVO). Analysis of the elastic parameters estimated, using the ratio of s-wave to P-wave velocity contrasts and the deviation of this parameter from a normal background trend, promises to have application in AVO analysis. The inversion method is demonstrated by application to real data from the North Sea.


Sign in / Sign up

Export Citation Format

Share Document