High-speed train speed estimation via one geophone near an high-speed railway

Author(s):  
Xiaokai Wang ◽  
Baoli Wang ◽  
Chun Li ◽  
Wenchao Chen ◽  
Chen Zhao
Author(s):  
W. J. A. Sykes

The running of passenger trains in regular service at speeds up to 100 mile/h is now of common occurrence on a number of railway systems. Above this speed it is necessary to use specially prepared tracks maintained to the highest possible standards at very considerable cost in terms of money, special equipment and time. It is possible to identify three broad classes of modern high-speed railway: (1) where the occasional high-speed train runs in between lower speed services; (2) where the best has been done with an existing railway to make it suitable for a high-speed train service; and (3) specially constructed lines. In all cases there are certain limitations on the acceleration effects to which the passenger may be subjected. Stopping from the highest speeds requires braking distances such that current ideas and requirements on emergency braking become meaningless. High standards of mental and physical soundness are required of drivers: even so, the driver's reaction to lineside signals is too slow, and external control of train speed by lineside detection systems will be required, linked inductively to regulating equipment on the train. Provided that a suitable line of route is available there appears at present to be no precise engineering limitation to the attainment of the highest speeds on rail which will intervene before a cost ceiling is reached at which further increases cannot be justified. There may also be a limit to the rate at which passengers can contemplate changes of scenery.


2021 ◽  
pp. 136943322110032
Author(s):  
Lin Ma ◽  
Wei Zhang ◽  
Steve C.S. Cai ◽  
Shaofan Li

In this paper, the dynamic amplification factors (DAFs) of high-speed railway continuous girder bridges are studied. The vehicle-bridge interactions (VBIs) of 13 concrete continuous girder bridges with spans ranging from 48 to 130 m are analyzed, the influences of the train speed, the train marshalling and the bridge fundamental frequency on the DAF are investigated, and the DAF design standard for high-speed railway bridges is discussed. The results indicate that for the continuous beam bridge whose fundamental frequency is less than 3.0 Hz, the maximum DAF is no more than 1.15; while for the bridge examples with a fundamental frequency larger than 3.0 Hz, the maximum DAF reaches 1.25 because the resonance occurs at high train speed. The empirical formulas of the DAFs in the Japan Railway Technical Research Institute (JRTRI) code could provide a conservative estimation of the DAFs of high-speed railway continuous bridges.


Author(s):  
Minling Feng ◽  
Chaoxian Wu ◽  
Shaofeng Lu ◽  
Yihui Wang

Automatic train operation (ATO) systems are fast becoming one of the key components of the intelligent high-speed railway (HSR). Designing an effective optimal speed trajectory for ATO is critical to guide the high-speed train (HST) to operate with high service quality in a more energy-efficient way. In many advanced HSR systems, the traction/braking systems would provide multiple notches to satisfy the traction/braking demands. This paper modelled the applied force as a controlled variable based on the selection of notch to realise a notch-based train speed trajectory optimisation model to be solved by mixed integer linear programming (MILP). A notch selection model with flexible vertical relaxation was proposed to allow the traction/braking efforts to change dynamically along with the selected notch by introducing a series of binary variables. Two case studies were proposed in this paper where Case study 1 was conducted to investigate the impact of the dynamic notch selection on train operations, and the optimal result indicates that the applied force can be flexibly adjusted corresponding to different notches following a similar operation sequence determined by optimal train control theory. Moreover, in addition to the maximum traction/braking notches and coasting, medium notches with appropriate vertical relaxation would be applied in accordance with the specific traction/braking demands to make the model feasible. In Case study 2, a comprehensive numerical example with the parameters of CRH380AL HST demonstrates the robustness of the model to deal with the varying speed limit and gradient in a real-world scenario. The notch-based model is able to obtain a more realistic optimal strategy containing dynamic notch selection and speed trajectory with an increase (1.622%) in energy consumption by comparing the results of the proposed model and the non-notch model.


2013 ◽  
Vol 409-410 ◽  
pp. 1496-1501 ◽  
Author(s):  
Jing Mang Xu ◽  
Ping Wang ◽  
Hao Xu

Electric switch machine locks the crossing rail in the working direction and checks the working status of the crossing. With the increase of train speed, the ZD(J)9 electric switch machine cant satisfy the equipment of high speed railway, This paper studied the optimization; in order to study the lock calculation of nose rail after conversion, a dynamic model is established to research the influence of working status of the crossing. It indicates that for the first traction point, the stress and deformation are mainly affected by scant displacement between nose rail and wing rail; for the second traction point, they are affected by the gap between nose rail and spacer; fastener lateral stiffness doesnt influence the stress status, but the lateral fastener stiffness should not be too small.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jie Zhang ◽  
Xinbiao Xiao ◽  
Dewei Wang ◽  
Yan Yang ◽  
Jing Fan

This paper presents a detailed investigation into the contributions of different sound sources to the exterior noise of a high-speed train both experimentally and by simulations. The in situ exterior noise measurements of the high-speed train, including pass-by noise and noise source identification, are carried out on a viaduct. Pass-by noise characteristics, noise source localizations, noise source contributions of different regions, and noise source vertical distributions are considered in the data analysis, and it is shown how they are affected by the train speed. An exterior noise simulation model of the high-speed train is established based on the method of ray acoustics, and the inputs come from the array measurements. The predicted results are generally in good agreement with the measurements. The results show that for the high-speed train investigated in this paper, the sources with the highest levels are located at bogie and pantograph regions. The contributions of the noise sources in the carbody region on the pass-by noise increase with an increasing distance, while those in the bogie and train head decrease. The source contribution rates of the bogie and the lower region decrease with increasing train speed, while those of the coach centre increase. At a distance of 25 m, the effect of the different sound sources control on the pass-by noise is analysed, namely, the lower region, bogie, coach centre, roof region, and pantograph. This study can provide a basis for exterior noise control of high-speed trains.


2020 ◽  
Vol 165 ◽  
pp. 04075
Author(s):  
Qizhang Li ◽  
Yongliang Xie

Underground high-speed railway station is becoming more and more popular in recent years, due to its advantage in relieving the tense situation of urban construction land. HVAC (Heating, Ventilation and Air Conditioning) system of underground railway station consumes large energy, therefore it is necessary to find a way to decrease the energy consumption in stations. Reasonable ventilation and air organization are the basis of energy-saving design of environment control system in stations. The energy consumption could be reduced greatly by utilizing the piston wind properly. In the present work, airflow characteristics in the station are investigated when high-speed train is passing through the underground railway station with CCM+ software. Results show that piston wind has different effects on airflow in the platform when the high-speed train is running. However, the air velocity in the platform is always lower than 5 m/s. In order to analyse the effect of piston wind on the airflow in the platform in more detail, the velocities and temperatures at waiting line are extracted. The air velocity near two ends of platform is larger and the similar results could also be observed for temperatures.


2011 ◽  
Vol 368-373 ◽  
pp. 2575-2580 ◽  
Author(s):  
Long Long Fu ◽  
Quan Mei Gong ◽  
Yang Wang

To investigate the dynamic transfer characteristics of low geosynthetic-reinforced embankments supported by CFG piles under high-speed train load, a numerical study has been conducted through dynamic finite element method on basis of the dynamic field test on a cross-section of Beijing-Shanghai high-speed railway. The comparative analysis on results of numerical study and field test indicated the distribution characteristics of vertical dynamic stress induced by high-speed train load in subgrade soil under railway line. The numerical results also suggested a high stress area in subgrade where vertical dynamic stress is over 1kPa. Conclusions of this work can provide reference for both design and estimation of long-term settlement of low geosynthetic-reinforced embankments supported by CFG piles for high-speed railway.


2012 ◽  
Vol 226-228 ◽  
pp. 102-105
Author(s):  
Wen Qing Zhu ◽  
Yang Yong Zhu

With the rapid development of high-speed railway in China, the aerodynamic brake is very likely to be an important emergency braking mode of high-speed train in the future. This paper takes aerodynamic braking wing as the object, and uses the finite element software to divide the meshes, then analyses the model influenced by static stress. After simulating the vibratory frequency response of the model in the flow field, it finds that the largest deformation happens in the middle of the upper edge of the wind wing, when the wind speed gets to 500km/h and the load frequency to 4Hz. Some conclusions of this thesis can provide reference for researching the applying the aerodynamic brake in the high-speed trains and laying the foundation for solving the riding and braking safety problems.


2006 ◽  
Vol 326-328 ◽  
pp. 635-638 ◽  
Author(s):  
Young Sam Ham ◽  
Jai Sung Hong

Railways are a mass transportation system with high safety and punctuality. These strengths have been well proved by tests and evaluations. Railways are an integrated system with cars, power, signal, communication, line structures and operation. Among many safety standards of these systems, contact force between wheels and lines can be chosen since a derailment coefficient evaluated by contract force is the most important fact that decides the safety of railways. Especially regarding express trains, since they run twice faster than conventional ones, the evaluation of a derailment coefficient is more important than any other criteria. Currently, Korean express trains between Seoul and Pusan use the same stations as conventional trains in Daejeon and Dong-Daegu; therefore, express trains run on conventional lines from express lines. This paper describes test results acquired by increasing the train speed where express lines and conventional lines are connected. Test results tell that it is safe with under 0.8 derailment coefficient and running time is reduced by 10~30 seconds in each section.


2013 ◽  
Vol 742 ◽  
pp. 13-18
Author(s):  
Qian Su ◽  
Wei Jiang ◽  
Kai Jiang ◽  
Yu Jie Li ◽  
Ling Ling Yang

The criterion for residual deformation of Substructure of ballasteless track on railway passenger dedicated line is extremely strict in order to satisfy the safety and comfort requirements of the high-speed train during operation period, urgent need to strengthen the ballastless track lines settlement deformation observation, prediction and assessment technology. Based on Chengdu-Guanxian line, this paper puts forward observation programs of subgrade settlement combined with the characteristics of Subgrade Settlement through the analysis of the influence factors of subgrade settlement deformation and key consideration about the factors of nighttime observation precision. It shows that the monitoring and assessment technology could meet the requirements through the analysis of field data, it can be guidance of railway management departments to make maintenance plan. Some advices provide reference for the monitoring and assessment of high-speed railway subgrade settlement during operation period.


Sign in / Sign up

Export Citation Format

Share Document