Resistance training improves strength and functional capacity in persons with multiple sclerosis

2004 ◽  
Vol 10 (6) ◽  
pp. 668-674 ◽  
Author(s):  
L J White ◽  
S C McCoy ◽  
V Castellano ◽  
G Gutierrez ◽  
J E Stevens ◽  
...  

The purpose of this study was to evaluate the effect of an eight-week progressive resistance training programme on lower extremity strength, ambulatory function, fatigue and self-reported disability in multiple sclerosis (MS) patients (mean disability score 3.79-0.8). Eight MS subjects volunteered for twice weekly training sessions. During the first two weeks, subjects completed one set of 8 -10 reps at 50% of maximal voluntary contraction (MVC) of knee flexion, knee extension and plantarflexion exercises. In subsequent sessions, the subjects completed one set of 10 -15 repetitions at 70% of MVC. The resistance was increased by 2 -5% when subjects completed 15 repetitions in consecutive sessions. Isometric strength of the quadriceps, hamstring, plantarflexor and dorsiflexor muscle groups was assessed before and after the training programme using an isokinetic dynamometer. Magnetic resonance images of the thigh were acquired before and after the exercise programme as were walking speed (25-ft), number of steps in 3 min, and self-reported fatigue and disability. Knee extension (7.4%), plantarflexion (52%) and stepping performance (8.7%) increased significantly (PB-0.05). Self-reported fatigue decreased (PB-0.05) and disability tended to decrease (P -0.07) following the training programme. MS patients are capable of making positive adaptations to resistance training that are associated with improved ambulation and decreased fatigue.

2007 ◽  
Vol 16 (2) ◽  
pp. 143-153 ◽  
Author(s):  
C. Ayán Pérez ◽  
V. Martín Sánchez ◽  
F. De Souza Teixeira ◽  
J.A. De Paz Fernández

Context:Physical exercise is regarded as a useful tool in the treatment of multiple sclerosis (MS). Generally, physical rehabilitation have been based on the prescription of aerobic exercises, while fewer programs have been aimed at developing muscular strength.Objective:To establish whether the physical fitness of MS sufferers can be improved by a training program for developing muscular strength.Design:Before and after studySetting:University multipurpose roomParticipants:36 patients, all able to walk, belonging to the Leon Multiple Sclerosis Association.Interventions:The physical exercise programme consisted in resistance training sessions, based mainly on callisthenic, or bodyweight, exercises, during six weeks.


2006 ◽  
Vol 101 (3) ◽  
pp. 715-720 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara

Alternate muscle activity between synergist muscles has been demonstrated during low-level sustained contractions [≤5% of maximal voluntary contraction (MVC) force]. To determine the functional significance of the alternate muscle activity, the association between the frequency of alternate muscle activity during a low-level sustained knee extension and the reduction in knee extension MVC force was studied. Forty-one healthy subjects performed a sustained knee extension at 2.5% MVC force for 1 h. Before and after the sustained knee extension, MVC force was measured. The surface electromyogram was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles. The frequency of alternate muscle activity for RF-VL, RF-VM, and VL-VM pairs was determined during the sustained contraction. The frequency of alternate muscle activity ranged from 4 to 11 times/h for RF-VL (7.0 ± 2.0 times/h) and RF-VM (7.0 ± 1.9 times/h) pairs, but it was only 0 to 2 times/h for the VL-VM pair (0.5 ± 0.7 times/h). MVC force after the sustained contraction decreased by 14% ( P < 0.01) from 573.6 ± 145.2 N to 483.3 ± 130.5 N. The amount of reduction in MVC force was negatively correlated with the frequency of alternate muscle activity for the RF-VL and RF-VM pairs ( P < 0.001 and r = 0.65 for both) but not for the VL-VM pair. The results demonstrate that subjects with more frequent alternate muscle activity experience less muscle fatigue. We conclude that the alternate muscle activity between synergist muscles attenuates muscle fatigue.


2000 ◽  
Vol 89 (4) ◽  
pp. 1420-1424 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara ◽  
Tetsuo Fukunaga

The purpose of the study was to examine the effect of prolonged tonic vibration applied to a single synergist muscle on maximal voluntary contraction (MVC) and maximal rate of force development (dF/d t max). The knee extension MVC force and surface electromyogram (EMG) from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) during MVC were recorded before and after vibration of RF muscle at 30 Hz for 30 min. MVC, dF/d t max, and the integrated EMG (iEMG) of RF decreased significantly after prolonged tonic vibration in spite of no changes in iEMG of VL and VM. The present results indicate that MVC and dF/d t max may be influenced by the attenuated Ia afferent functions of a single synergist muscle.


Author(s):  
Joohyun Rhee ◽  
Taylor Dillards ◽  
Michelle Nzoiwu ◽  
Ranjana K. Mehta

Stress has adverse impacts on mental and physical health and quality of life, especially in older adults. Stress can impair cognitive function including short and long-term memory, and this functional declines can further be associated with decreased neuromuscular performance (Mehta & Parasuraman, 2014) and increased fatigability (Keller-Ross et al., 2014). Since older adults are more susceptible to the effect of stress because their limited mobility caused by aging can worsen under stress (Noven at al., 2014), it is important to examine the effect of acute stress on neuromuscular function in older adults. In the present study, we tested the effect of social stress on neuromuscular function of both upper and lower extremity in older adults before and after a short bout of social stress. Thirty participants (15 males, 15 females, mean age: 73.3 (5.6) yrs) performed ten trials of submaximal voluntary contraction at 30% of their maximum voluntary contraction force level before and after the Trier Social Stress Test (TSST) session. Handgrip and knee extension motor performance was measured on separate days. TSST consisted of five minutes speech and five minutes serial arithmetic subtraction tasks. We measured force steadiness and electromyography (EMG) of working muscles to evaluate motor function. Additionally, electrocardiogram (ECG), the Visual Analogue Scale of Stress (VAS), and salivary cortisol were collected to evaluate the effect of the TSST. Neural activation pattern changes of prefrontal and sensorimotor area during exercise and TSST sessions was recorded using functional Near Infrared Spectroscopy (fNIRS). To confirm whether the TSST session increased stress level in our participants, we first analysed the stress metrics. Heart rate increased during the TSST and returned to prestress level instantly after the TSST session. Perceived stress level using the VAS increased after TSST. While not significant, salivary cortisol level increased after the TSST session. Findings indicate that handgrip force steadiness improved after the TSST session, whereas knee extension force steadiness remained unchanged. On the other hand, handgrip EMG root mean square (RMS) did not change after stress while knee extension EMG RMS was found to increase. Neural activation during handgrip exercise increased at the left motor area, and neural activation during knee extension increased at the left sensory area after the TSST session. Change of heart rate and VAS indicates that participants’ stress level was increased after stress and the improved motor performance during handgrip exercise after the stress is consistent with a previous study that reported increased memory function after stress in older adults (Pulopulos et al., 2015). However, the differential effects of stress based on upper or lower extremity indicates increased sensitivity of certain motor tasks to social stress than other. While social stress is known to affect response time but not memory function (Guez et al., 2016), different spatial activation pattern between handgrip and knee extension exercises observed in the present study suggest that different neural strategies were adapted to compensate for the effects of acute social stress to maintain motor performance.


Thrita ◽  
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Ameneh Balavi ◽  
Mohsen Ghanbarzade

Background: Airways resistance and broncho-spasm due to exercise are very common. Factors such as exercise, temperature, humidity, air pollution, and disease affect this complication. This study was performed due to the increase in physical disability of muscle weakness in patients with MS and the lack of information on the effect of different strength training exercises on air resistance. Objectives: The current study aimed to investigate the effect of resistance training with different intensities on airway resistance indices of women with MS. Methods: Thirty six women with Multiple sclerosis who had a disability criterion ranged from 1 to 4 (based on Krutzke’s disability scale) were sampled using the targeted and purposive sampling methods. They were selected based on the initial health conditions and then were randomly assigned to each of the three groups (each consisting of 12 participants). The first group received resistance training for 12 weeks, three sessions a week with intensity 60% 1RM, and the second group received resistance training for 12 weeks, three sessions a week with intensity 80% 1RM. Those in the control group didn’t have an exercise program. Results: Airway resistance indices were measured both before and after 12 weeks of resistance training, airway resistance indices in both groups was significantly decreased, and these changes were significant in both experimental groups as compared to the control group. Conclusions: According to the findings, in addition to improving balance, fatigue, and muscle endurance, high-intensity resistance training had similar effects to moderate-intensity exercise on pulmonary function indices in women with MS.


2013 ◽  
Vol 114 (10) ◽  
pp. 1426-1434 ◽  
Author(s):  
Daria Neyroud ◽  
Jennifer Rüttimann ◽  
Anne F. Mannion ◽  
Guillaume Y. Millet ◽  
Nicola A. Maffiuletti ◽  
...  

The extent and characteristics of muscle fatigue of different muscle groups when subjected to a similar fatiguing task may differ. Thirteen healthy young men performed sustained contractions at 50% maximal voluntary contraction (MVC) force until task failure, with four different muscle groups, over two sessions. Per session, one upper limb and one lower limb muscle group were tested (knee extensors and thumb adductor, or plantar and elbow flexors). Changes in voluntary activation level and contractile properties were derived from doublet responses evoked during and after MVCs before and after exercise. Time to task failure differed ( P < 0.05) between muscle groups (220 ± 64 s for plantar flexors, 114 ± 27 s for thumb adductor, 77 ± 25 s for knee extensors, and 72 ± 14 s for elbow flexors). MVC force loss immediately after voluntary task failure was similar (−30 ± 11% for plantar flexors, −37 ± 13% for thumb adductor, −34 ± 15% for knee extensors, and −40 ± 12% for elbow flexors, P > 0.05). Voluntary activation was decreased for plantar flexors only (from 95 ± 5% to 82 ± 9%, P < 0.05). Potentiated evoked doublet amplitude was more depressed for upper limb muscles (−59.3 ± 14.7% for elbow flexors and −60.1 ± 24.1% for thumb adductor, P < 0.05) than for knee extensors (−28 ± 15%, P < 0.05); no reduction was found in plantar flexors (−7 ± 12%, P > 0.05). In conclusion, despite different times to task failure when sustaining an isometric contraction at 50% MVC force for as long as possible, diverse muscle groups present similar loss of MVC force after task failure. Thus the extent of muscle fatigue is not affected by time to task failure, whereas this latter determines the etiology of fatigue.


2018 ◽  
Vol 124 (4) ◽  
pp. 970-979 ◽  
Author(s):  
Harrison T. Finn ◽  
David M. Rouffet ◽  
David S. Kennedy ◽  
Simon Green ◽  
Janet L. Taylor

During fatiguing voluntary contractions, the excitability of motoneurons innervating arm muscles decreases. However, the behavior of motoneurons innervating quadriceps muscles is unclear. Findings may be inconsistent because descending cortical input influences motoneuron excitability and confounds measures during exercise. To overcome this limitation, we examined effects of fatigue on quadriceps motoneuron excitability tested during brief pauses in descending cortical drive after transcranial magnetic stimulation (TMS). Participants ( n = 14) performed brief (~5-s) isometric knee extension contractions before and after a 10-min sustained contraction at ~25% maximal electromyogram (EMG) of vastus medialis (VM) on one ( n = 5) or two ( n = 9) days. Electrical stimulation over thoracic spine elicited thoracic motor evoked potentials (TMEP) in quadriceps muscles during ongoing voluntary drive and 100 ms into the silent period following TMS (TMS-TMEP). Femoral nerve stimulation elicited maximal M-waves (Mmax). On the 2 days, either large (~50% Mmax) or small (~15% Mmax) TMS-TMEPs were elicited. During the 10-min contraction, VM EMG was maintained ( P = 0.39), whereas force decreased by 52% (SD 13%) ( P < 0.001). TMEP area remained unchanged ( P = 0.9), whereas large TMS-TMEPs decreased by 49% (SD 28%) ( P = 0.001) and small TMS-TMEPs by 71% (SD 22%) ( P < 0.001). This decline was greater for small TMS-TMEPs ( P = 0.019; n = 9). Therefore, without the influence of descending drive, quadriceps TMS-TMEPs decreased during fatigue. The greater reduction for smaller responses, which tested motoneurons that were most active during the contraction, suggests a mechanism related to repetitive activity contributes to reduced quadriceps motoneuron excitability during fatigue. By contrast, the unchanged TMEP suggests that ongoing drive compensates for altered motoneuron excitability. NEW & NOTEWORTHY We provide evidence that the excitability of quadriceps motoneurons decreases with fatigue. Our results suggest that altered intrinsic properties brought about by repetitive activation of the motoneurons underlie their decreased excitability. Furthermore, we note that testing during voluntary contraction may not reflect the underlying depression of motoneuron excitability because of compensatory changes in ongoing voluntary drive. Thus, this study provides evidence that processes intrinsic to the motoneuron contribute to muscle fatigue of the knee extensors.


2014 ◽  
Vol 12 (4) ◽  
pp. 425-432 ◽  
Author(s):  
Gilberto Monteiro dos Santos ◽  
Fábio Tanil Montrezol ◽  
Luciana Santos Souza Pauli ◽  
Angélica Rossi Sartori-Cintra ◽  
Emilson Colantonio ◽  
...  

ObjectiveTo investigate the effects of a specific protocol of undulatory physical resistance training on maximal strength gains in elderly type 2 diabetics.Methods The study included 48 subjects, aged between 60 and 85 years, of both genders. They were divided into two groups: Untrained Diabetic Elderly (n=19) with those who were not subjected to physical training and Trained Diabetic Elderly (n=29), with those who were subjected to undulatory physical resistance training. The participants were evaluated with several types of resistance training’s equipment before and after training protocol, by test of one maximal repetition. The subjects were trained on undulatory resistance three times per week for a period of 16 weeks. The overload used in undulatory resistance training was equivalent to 50% of one maximal repetition and 70% of one maximal repetition, alternating weekly. Statistical analysis revealed significant differences (p<0.05) between pre-test and post-test over a period of 16 weeks.Results The average gains in strength were 43.20% (knee extension), 65.00% (knee flexion), 27.80% (supine sitting machine), 31.00% (rowing sitting), 43.90% (biceps pulley), and 21.10% (triceps pulley).Conclusion Undulatory resistance training used with weekly different overloads was effective to provide significant gains in maximum strength in elderly type 2 diabetic individuals.


2009 ◽  
Vol 107 (4) ◽  
pp. 1235-1240 ◽  
Author(s):  
Sean Walsh ◽  
Bethany K. Kelsey ◽  
Theodore J. Angelopoulos ◽  
Priscilla M. Clarkson ◽  
Paul M. Gordon ◽  
...  

The present study examined associations between the ciliary neurotrophic factor (CNTF) 1357 G → A polymorphism and the muscle strength response to a unilateral, upper arm resistance-training (RT) program among healthy, young adults. Subjects were 754 Caucasian men (40%) and women (60%) who were genotyped and performed a training program of the nondominant (trained) arm with the dominant (untrained) arm as a comparison. Peak elbow flexor strength was measured with one repetition maximum, isometric strength with maximum voluntary contraction, and bicep cross-sectional area with MRI in the trained and untrained arms before and after training. Women with the CNTF GG genotype gained more absolute isometric strength, as measured by MVC (6.5 ± 0.3 vs. 5.2 ± 0.5 kg), than carriers of the CNTF A1357 allele in the trained arm pre- to posttraining ( P < 0.05). No significant associations were seen in men. Women with the CNTF GG genotype gained more absolute dynamic (1.0 ± 0.1 vs. 0.6 ± 0.1 kg) and allometric (0.022 ± 0.0 vs. 0.015 ± 0.0 kg/kg−0.67) strength, as measured by 1 RM, than carriers of the CNTF A1357 allele in the untrained arm pre- to posttraining ( P < 0.05). No significant associations were seen in men. No significant associations, as measured by cross-sectional area, were seen in men or women. The CNTF 1357 G → A polymorphism explains only a small portion of the variability in the muscle strength response to training in women.


2019 ◽  
Vol 9 (7) ◽  
pp. 70 ◽  
Author(s):  
Sofia Mezini ◽  
Andrew Soundy

The purpose of this study is to consider the factors that influence fatigue related to physical activity in patients with multiple sclerosis (PwMS) and to identify the necessary adaptations undertaken by patients to remain active. A review using a thematic synthesis methodology situated within a subtle realist paradigm was undertaken. The review was completed in three stages: 1) search of relevant studies; 2) critical appraisal of literature; and 3) thematic synthesis. Nineteen studies met the inclusion criteria. This included a total of 263 participants of whom 243 were PwMS (159 females, 70 males and 14 unknown). The aggregated mean age was 53.3 years and aggregated mean time living with MS post diagnosis 11.3 years. Following critical appraisal, no articles were excluded. Three major themes were identified: (1) fatigue-related consequences, (2) exercise related barriers affecting fatigue, and (3) factors that make fatigue bearable for MS individuals. The thematic synthesis identified the cycle of activity and inactivity as a result of fatigue perception. Exercise experience, professional and social support, as well as the necessary adaptation of a training programme empower PwMS to adopt a more active coping strategy and enjoy the benefits of exercise. Clinicians could consider the implementation of a suitable, individualised exercise programme to reduce PwMS’s stress during physical activities.


Sign in / Sign up

Export Citation Format

Share Document