scholarly journals Cerebral and autonomic responses to emotional facial expressions in depersonalisation disorder

2008 ◽  
Vol 193 (3) ◽  
pp. 222-228 ◽  
Author(s):  
Erwin Lemche ◽  
Ananthapadmanabha Anilkumar ◽  
Vincent P. Giampietro ◽  
Michael J. Brammer ◽  
Simon A. Surguladze ◽  
...  

BackgroundDepersonalisation disorder is characterised by emotion suppression, but the cerebral mechanisms of this symptom are not yet fully understood.AimsTo compare brain activation and autonomic responses of individuals with the disorder and healthy controls.MethodHappy and sad emotion expressions in increasing intensities (neutral to intense) were presented in an implicit event-related functional magnetic resonance imaging (fMRI) design with simultaneous measurement of autonomic responses.ResultsParticipants with depersonalisation disorder showed fMRI signal decreases, whereas the control group showed signal increases in response to emotion intensity increases in both happy and sad expressions. The analysis of evoked haemodynamic responses from regions exhibiting functional connectivity between central and autonomic nervous systems indicated that in depersonalisation disorder initial modulations of haemodynamic response occurred significantly earlier (2s post-stimulus) than in the control group (4–6s post-stimulus).ConclusionsThe results suggest that fMRI signal decreases are possible correlates of emotion suppression in depersonalisation disorder.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. Rizzolatti ◽  
A. D’Alessio ◽  
M. Marchi ◽  
G. Di Cesare

AbstractPeople communicate using speech, gestures, and, less frequently, touches. An example of tactile communication is represented by handshake. Customs surrounding handshake vary in different cultures. In Western societies is mostly used when meeting, parting, as a sign of congratulations or at the end of a successful business. Despite its importance in social life, the neural mechanism underlying the affective components conveyed by handshake (“tactile vitality forms”) is unknown. Here we combined functional magnetic resonance imaging (fMRI) and electromyography (EMG), to investigate the neural affective activations during handshakes. We demonstrated that handshake conveying gentle or aggressive tactile vitality forms produces a stronger activation of the dorso-central insula. The simultaneous presence of emotional facial expressions modulates the activation of this insular sector. Finally, we provide evidence that the cingulate cortex is involved in the processing of facial expressions conveying different vitality forms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ami Cohen ◽  
Kfir Asraf ◽  
Ivgeny Saveliev ◽  
Orrie Dan ◽  
Iris Haimov

AbstractThe ability to recognize emotions from facial expressions is essential to the development of complex social cognition behaviors, and impairments in this ability are associated with poor social competence. This study aimed to examine the effects of sleep deprivation on the processing of emotional facial expressions and nonfacial stimuli in young adults with and without attention-deficit/hyperactivity disorder (ADHD). Thirty-five men (mean age 25.4) with (n = 19) and without (n = 16) ADHD participated in the study. During the five days preceding the experimental session, the participants were required to sleep at least seven hours per night (23:00/24:00–7:00/9:00) and their sleep was monitored via actigraphy. On the morning of the experimental session, the participants completed a 4-stimulus visual oddball task combining facial and nonfacial stimuli, and repeated it after 25 h of sustained wakefulness. At baseline, both study groups had poorer performance in response to facial rather than non-facial target stimuli on all indices of the oddball task, with no differences between the groups. Following sleep deprivation, rates of omission errors, commission errors and reaction time variability increased significantly in the ADHD group but not in the control group. Time and target type (face/non-face) did not have an interactive effect on any indices of the oddball task. Young adults with ADHD are more sensitive to the negative effects of sleep deprivation on attentional processes, including those related to the processing of emotional facial expressions. As poor sleep and excessive daytime sleepiness are common in individuals with ADHD, it is feasible that poor sleep quality and quantity play an important role in cognitive functioning deficits, including the processing of emotional facial expressions that are associated with ADHD.


2008 ◽  
Vol 29 (1) ◽  
pp. 144-156 ◽  
Author(s):  
Yuji Shen ◽  
Risto A Kauppinen ◽  
Rishma Vidyasagar ◽  
Xavier Golay

A new functional magnetic resonance imaging (fMRI) technique is proposed based on nulling the extravascular gray matter (GM) signal, using a spatially nonselective inversion pulse. The remaining MR signal provides cerebral blood volume (CBV) information from brain activation. A theoretical framework is provided to characterize the sources of GM-nulled (GMN) fMRI signal, effects of partial voluming of cerebrospinal fluid (CSF) and white matter, and behaviors of GMN fMRI signal during brain activation. Visual stimulation paradigm was used to explore the GMN fMRI signal behavior in the human brain at 3T. It is shown that the GMN fMRI signal increases by 7.2% ± 1.5%, which is two to three times more than that obtained with vascular space occupancy (VASO)-dependent fMRI (−3.2% ± 0.2%) or blood oxygenation level-dependent (BOLD) fMRI (2.9% ± 0.7%), using a TR of 3,000 ms and a resolution of 2 × 2 × 5 mm3. Under these conditions the fMRI signal-to-noise ratio (SNRfMRI) for BOLD, GMN, and VASO images was 4.97 ± 0.76, 4.56 ± 0.86, and 2.43 ± 1.06, respectively. Our study shows that both signal intensity and activation volume in GMN fMRI depend on spatial resolution because of partial voluming from CSF. It is shown that GMN fMRI is a convenient tool to assess CBV changes associated with brain activation.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Shuqin Yang ◽  
Xiaoyan Bie ◽  
Yanmei Wang ◽  
Junnan Li ◽  
Yujing Wang ◽  
...  

The balanced iterative reducing and clustering using hierarchies (BIRCH) method was adopted to optimize the results of the resting-state functional magnetic resonance imaging (RS-fMRI) to analyze the changes in the brain function of patients with chronic pain accompanied by poor emotion or abnormal sleep quality in this study, so as to provide data support for the prevention and treatment of clinical chronic pain with poor emotion or sleep quality. 159 patients with chronic pain who visited the hospital were selected as the research objects, and they were grouped according to the presence or absence of abnormalities in emotion and sleep. The patients without poor emotion and sleep quality were set as the control group (60 cases), and the patients with the above symptoms were defined in the observation group (90 cases). The brain function was detected by RS-fMRI technology based on the BIRCH algorithm. The results showed that the rand index (RI), adjustment of RI (ARI), and Fowlkes–Mallows index (FMI) results in the k-means, flow cytometry (FCM), and BIRCH algorithms were 0.82, 0.71, and 0.88, respectively. The scores of Hamilton Depression Scale (HAHD), Hamilton Anxiety Scale (HAMA), and Pittsburgh Sleep Quality Index (PSQI) were 7.26 ± 3.95, 7.94 ± 3.15, and 8.03 ± 4.67 in the observation group and 4.03 ± 1.95, 5.13 ± 2.35, and 4.43 ± 2.07 in the control group; the higher proportion of RS-fMRI was with abnormal brain signal connections. A score of 7 or more meant that the number of brain abnormalities was more than 90% and that of less than 7 was less than 40%, showing a statistically obvious difference in contrast P < 0.05 . Therefore, the BIRCH clustering algorithm showed reliable value in the optimization of RS-fMRI images, and RS-fMRI showed high application value in evaluating the emotion and sleep quality of patients with chronic pain.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Pinar Senay Özbay ◽  
Catie Chang ◽  
Dante Picchioni ◽  
Hendrik Mandelkow ◽  
Miranda Grace Chappel-Farley ◽  
...  

AbstractThe interpretation of functional magnetic resonance imaging (fMRI) studies of brain activity is often hampered by the presence of brain-wide signal variations that may arise from a variety of neuronal and non-neuronal sources. Recent work suggests a contribution from the sympathetic vascular innervation, which may affect the fMRI signal through its putative and poorly understood role in cerebral blood flow (CBF) regulation. By analyzing fMRI and (electro-) physiological signals concurrently acquired during sleep, we found that widespread fMRI signal changes often co-occur with electroencephalography (EEG) K-complexes, signatures of sub-cortical arousal, and episodic drops in finger skin vascular tone; phenomena that have been associated with intermittent sympathetic activity. These findings support the notion that the extrinsic sympathetic innervation of the cerebral vasculature contributes to CBF regulation and the fMRI signal. Accounting for this mechanism could help separate systemic from local signal contributions and improve interpretation of fMRI studies.


2005 ◽  
Vol 186 (3) ◽  
pp. 209-214 ◽  
Author(s):  
Tilo T. J. Kircher ◽  
Tomasina M. Oh ◽  
Michael J. Brammer ◽  
Philip K. McGuire

BackgroundThe production of grammatically complex sentences is impaired in schizophrenia. It has been suggested that impaired syntax processing reflects a risk for the disorder.AimsTo examine the neural correlates of syntax production in people with schizophrenia using functional magnetic resonance imaging (fMRI).MethodSix patients with schizophrenia and six healthy volunteers spoke about seven Rorschach inkblots for 3 min each while correlates of brain activation were measured with fMRI. Participants produced varying amounts of syntactically simple and complex sentences during each 3 min run. The number of simple and complex sentences was correlated separately with the BOLD contrast.ResultsIn the comparison between the control group and the patient group, the number of complex sentences produced was correlated with activation in the posterior portion of the right middle temporal (Brodmann area 21) and left superior frontal (BA 10) gyri in the control group but not in the patients.ConclusionsThe absence of activation in the right posterior temporal and left superior frontal cortex in patients with schizophrenia might contribute to the articulation of grammatically more simple speech in people with this disorder.


Sign in / Sign up

Export Citation Format

Share Document