An Energy-Based Approach to the Generalized Optimal Locations of Viscous Dampers in Two-Way Asymmetrical Buildings

2014 ◽  
Vol 30 (2) ◽  
pp. 867-889 ◽  
Author(s):  
Jui-Liang Lin ◽  
Manh-Tien Bui ◽  
Keh-Chyuan Tsai

This paper proposes a simple approach to the generalized optimal locations of linear viscous dampers in elastic two-way asymmetrical buildings under bi-directional ground excitations. The control target used in this optimization process is to maximize the average dissipation rate of the overall strain energy of the two-way asymmetrical building under the ground excitation of two bi-directional unit impulses. The proposed control target, referred to as the smeared damping ratio, is an intrinsic property of the building system. Two advantages of the proposed approach appeal to engineering practice. First, the proposed approach does not require a complicated optimization algorithm. Second, due to the employment of an intrinsic property rather than a certain response parameter as the target performance index, the optimal damper locations resulting from the proposed approach are generalized, which are independent on the characteristics of input ground motions.

2021 ◽  
pp. 875529302110279
Author(s):  
Sanaz Rezaeian ◽  
Linda Al Atik ◽  
Nicolas M Kuehn ◽  
Norman Abrahamson ◽  
Yousef Bozorgnia ◽  
...  

This article develops global models of damping scaling factors (DSFs) for subduction zone earthquakes that are functions of the damping ratio, spectral period, earthquake magnitude, and distance. The Next Generation Attenuation for subduction earthquakes (NGA-Sub) project has developed the largest uniformly processed database of recorded ground motions to date from seven subduction regions: Alaska, Cascadia, Central America and Mexico, South America, Japan, Taiwan, and New Zealand. NGA-Sub used this database to develop new ground motion models (GMMs) at a reference 5% damping ratio. We worked with the NGA-Sub project team to develop an extended database that includes pseudo-spectral accelerations (PSA) for 11 damping ratios between 0.5% and 30%. We use this database to develop parametric models of DSF for both interface and intraslab subduction earthquakes that can be used to adjust any subduction GMM from a reference 5% damping ratio to other damping ratios. The DSF is strongly influenced by the response spectral shape and the duration of motion; therefore, in addition to the damping ratio, the median DSF model uses spectral period, magnitude, and distance as surrogate predictor variables to capture the effects of the spectral shape and the duration of motion. We also develop parametric models for the standard deviation of DSF. The models presented in this article are for the RotD50 horizontal component of PSA and are compared with the models for shallow crustal earthquakes in active tectonic regions. Some noticeable differences arise from the considerably longer duration of interface records for very large magnitude events and the enriched high-frequency content of intraslab records, compared with shallow crustal earthquakes. Regional differences are discussed by comparing the proposed global models with the data from each subduction region along with recommendations on the applicability of the models.


2017 ◽  
Vol 24 (19) ◽  
pp. 4419-4432 ◽  
Author(s):  
Airong Liu ◽  
Zhicheng Yang ◽  
Hanwen Lu ◽  
Jiyang Fu ◽  
Yong-Lin Pi

When an arch is subjected to a periodic load, it may lose in-plane stability dynamically owing to parametric resonance. Previous investigations have been concentrated on in-plane dynamic buckling of pin-ended shallow arches. However, in engineering practice, fixed arches with different rise-to-span ratios are often encountered. Little research on in-plane dynamic instability of deep fixed arches has been reported in the literature. This paper is concerned with experimental and analytical investigations for in-plane dynamic instability of fixed circular arches with rise-to-span ratios 1/8–1/2 under a central periodic load owing to parametric resonance. Experiments are carried out to determine the in-plane frequency and damping ratio of arches, to investigate critical regions of frequencies and amplitudes of the periodic load for in-plane dynamic instability of arches, and to explore effects of the rise-to-span ratio and additional weights on dynamic instability. The analytical method for determining the region of excitation frequencies and amplitudes of the periodic load causing in-plane instability of the arch is established using the Hamilton’s principle by accounting for effects of additional concentrated weights. Comparisons of analytical solutions with test results show that they agree with each other quite well. These results show that the rise-to-span ratio significantly influences the bandwidth of regions of critical excitation frequencies for in-plane dynamic instability of arches. The critical frequencies of the periodic load and their bandwidth increase with a decrease of the rise–span ratio of the arch, whereas the corresponding amplitude of the periodic load decreases at the same time. It is also found that the central concentrated weight influences in-plane dynamic instability of arches significantly. As the weight increases, the critical frequencies of excitation and their bandwidth for in-plane dynamic instability of arches decreases, whereas the corresponding amplitude of excitation increases.


2021 ◽  
Vol 147 ◽  
pp. 106798
Author(s):  
Chun-Hsiang Kuo ◽  
Jyun-Yan Huang ◽  
Che-Min Lin ◽  
Chun-Te Chen ◽  
Kuo-Liang Wen

2019 ◽  
Vol 35 (3) ◽  
pp. 1311-1328 ◽  
Author(s):  
Ganyu Teng ◽  
Jack Baker

This paper evaluates CyberShake (version 15.12) ground motions for potential application to high-rise building design in the Los Angeles region by comparing them against recordings from past earthquakes as well as empirical models. We consider two selected sites in the Los Angeles region with different underlying soil conditions and select comparable suites of ground motion records from CyberShake and the NGA-West2 database according to the ASCE 7-16 requirements. Major observations include (1) selected ground motions from CyberShake and NGA-West2 share similar features, in terms of response spectra and polarization; (2) when selecting records from Cyber-Shake, it is easy to select motions with sources that match the hazard deaggregation; (3) CyberShake durations on soil are consistent with the empirical models considered, whereas durations on rock are slightly shorter; (4) occasional excessive polarization in ground motion is produced by San Andreas fault ruptures, though those records are usually excluded after the ground motion selection. Results from this study suggest that CyberShake ground motions are a suitable and promising source of ground motions for engineering evaluations.


2007 ◽  
Vol 301-302 ◽  
pp. 62-66 ◽  
Author(s):  
Tomonori Ito ◽  
Tatsuya Araki ◽  
Toru Akiyama ◽  
Kohji Nakamura

2010 ◽  
Vol 163-167 ◽  
pp. 2420-2423
Author(s):  
Hui Ji ◽  
Hong Sheng Zhao

Conventionally, when optimizing a structure, the single target structural optimization design method is usually used. However, this design result often can not meet with the multiple requirements of construction; furthermore its optimizing efficiency is low; so its application is limited. And more, as the objective function being generally continuous variable, the optimized result is not the structural module and this is inconvenient for construction. This paper, taking the structural strain energy and the cost of construction as the targets to be optimized, and the design variable being discrete, provides multiple-target earthquake-resistant optimization design method aiming at obtaining the largest stain energy and the lowest construction cost, and established the function relation formula between the strain energy and the cost of construction and obtained the satisfied result. The highlight of this process is adopting discrete variables as the design variables, therefore the optimized results (cross-sectional dimensions) will conform to the requirements of structural module and the engineering practice. The optimization process presented in this paper conforms entirely to the national standards: “Code for Design of Reinforced Concrete Structures” (GB50010-2002) and “Code for Earthquake-resistant Design of Buildings” (GB50011). The theory and methods presented in this paper will be helpful for the structural design engineers and the researchers.


Author(s):  
Luca Landi ◽  
Cristina Vorabbi ◽  
Pier Paolo Diotallevi

This paper deals with the parameters which influence the probability of reaching the near collapse limit state of RC frame structures equipped with nonlinear fluid viscous dampers. The study can be divided into two steps. The first aims to assess how the median and the dispersion of seismic demand can vary in the RC frame structures with and without dampers, considering a wide set of ground motions. The second step evaluates the expression in closed form, given by 2000 SAC/FEMA method, to assess the annual probability of failure of RC structures. This probability has been estimated considering a wide set of ground motions and different methods to approximate the hazard curve. The evaluations have been made on the basis of the results of a large number of nonlinear dynamic analyses; in particular, 180 nonlinear dynamic analyses have been made for the case studies with and without dampers. In conclusion, it has been noticed that the probabilistic assessment depends on the number of records considered and that the simplified formula provided by the 2000 SAC-FEMA method is strongly sensitive to the variation of the hazard curve and the dispersion.


2018 ◽  
Vol 12 (05) ◽  
pp. 1850011 ◽  
Author(s):  
Jiang Yi ◽  
Jianzhong Li ◽  
Zhongguo Guan

To investigate the effectiveness of viscous damper on seismic control of single-tower cable-stayed bridges subjected to near-field ground motions, a 1/20-scale full cable-stayed bridge model was designed, constructed and tested on shake tables. A typical far-field ground motion and a near-field one were used to excite the bridge model from low to high intensity. The seismic responses of the bridge model with and without viscous dampers were analyzed and compared. Both numerical and test results revealed that viscous dampers are quite effective in controlling deck displacement of cable-stayed bridges subjected to near-field ground motions. However, due to near-field effects, viscous damper dissipated most energy through one large hysteresis loop, extensively increasing the deformation and damping force demand of the damper. Further study based on numerical analysis reveals that to optimize deck displacement of cable-stayed bridges during an earthquake, a viscous damper with relatively larger damping coefficient should be introduced under near-field ground motions than far-field ones.


2012 ◽  
Vol 238 ◽  
pp. 648-651
Author(s):  
Zhi Hao Wang

The classical outrigger in frame-core tube structure cantilevering from the core tube or shear wall connected to the perimeter columns directly, which can effectively improve the lateral stiffness of the structure. A new energy-dissipation system for such structural system is studied, where the outrigger and perimeter columns are separate and vertical viscous dampers are equipped between the outrigger and perimeter columns to make full use of the relative big displacement of two components. The effectiveness of proposed system is evaluated by means of the modal damping ratio based on the proposed simplified model. The mathematic models of the structural system are obtained with both the assumed mode shape method and finite element method according to the simplified calculation diagram. Based on the modal damping ratio, the optimal damping coefficients of linear viscous dampers are determined, and effectiveness of proposed system is confirmed.


Sign in / Sign up

Export Citation Format

Share Document