scholarly journals Parameter Design for Viscous Dampers to Near-fault Cable-stayed Bridge Based on Equivalent Damping Ratio

Author(s):  
Yongfu Huang ◽  
Yan Xu ◽  
Jianzhong Li
2020 ◽  
Vol 27 (8) ◽  
pp. 1993-2022
Author(s):  
Xu Li ◽  
Jun Li ◽  
Xiaoyi Zhang ◽  
Jianfeng Gao ◽  
Chao Zhang

PurposeViscous dampers are commonly used in large span cable-stayed bridges to mitigate seismic effects and have achieved great success.Design/methodology/approachHowever, the nonlinear analysis on damper parameters is usually computational intensive and nonobjective. To address these issues, this paper proposes a simplified method to determine the viscous damper parameters for double-tower cable-stayed bridges. An empirical formula of the equivalent damping ratio of viscous dampers is established through decoupling nonclassical damping structures and linearization of nonlinear viscous dampers. Shaking table tests are conducted to verify the feasibility of the proposed method. Moreover, this simplified method has been proved in long-span cable-stayed bridges.FindingsThe feasibility of this method is verified by the simplified model shaking table test. This simplified method for determining the parameters of viscous dampers is verified in cable-stayed bridges with different spans.Originality/valueThis simplified method has been validated in cable-stayed bridges with various spans.


2020 ◽  
pp. 095745652097238
Author(s):  
Chun Cheng ◽  
Ran Ma ◽  
Yan Hu

Generalized geometric nonlinear damping based on the viscous damper with a non-negative velocity exponent is proposed to improve the isolation performance of a quasi-zero stiffness (QZS) vibration isolator in this paper. Firstly, the generalized geometric nonlinear damping characteristic is derived. Then, the amplitude-frequency responses of the QZS vibration isolator under force and base excitations are obtained, respectively, using the averaging method. Parametric analysis of the force and displacement transmissibility is conducted subsequently. At last, two phenomena are explained from the viewpoint of the equivalent damping ratio. The results show that decreasing the velocity exponent of the horizontal damper is beneficial to reduce the force transmissibility in the resonant region. For the case of base excitation, it is beneficial to select a smaller velocity exponent only when the nonlinear damping ratio is relatively large.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Xiuyan Hu ◽  
Qingjun Chen ◽  
Dagen Weng ◽  
Ruifu Zhang ◽  
Xiaosong Ren

In the design of damped structures, the additional equivalent damping ratio (EDR) is an important factor in the evaluation of the energy dissipation effect. However, previous additional EDR estimation methods are complicated and not easy to be applied in practical engineering. Therefore, in this study, a method based on energy dissipation is developed to simplify the estimation of the additional EDR. First, an energy governing equation is established to calculate the structural energy dissipation. By means of dynamic analysis, the ratio of the energy consumed by dampers to that consumed by structural inherent damping is obtained under external excitation. Because the energy dissipation capacity of the installed dampers is reflected by the additional EDR, the abovementioned ratio can be used to estimate the additional EDR of the damped structure. Energy dissipation varies with time, which indicates that the ratio is related to the duration of ground motion. Hence, the energy dissipation during the most intensive period in the entire seismic motion duration is used to calculate the additional EDR. Accordingly, the procedure of the proposed method is presented. The feasibility of this method is verified by using a single-degree-of-freedom system. Then, a benchmark structure with dampers is adopted to illustrate the usefulness of this method in practical engineering applications. In conclusion, the proposed method is not only explicit in the theoretical concept and convenient in application but also reflects the time-varying characteristic of additional EDR, which possesses the value in practical engineering.


Author(s):  
Hashem Ashrafiuon

Abstract This paper presents the effect of foundation flexibility on the optimum design of vibration absorbers. Flexibility of the base is incorporated into the absorber system equations of motion through an equivalent damping ratio and stiffness value in the direction of motion at the connection point. The optimum values of the uncoupled natural frequency and damping ratio of the absorber are determined over a range of excitation frequencies and the primary system damping ratio. The design parameters are computed and compared for the rigid, static, and dynamic models of the base as well as different levels of base flexibility.


Author(s):  
Wayne E. Whiteman ◽  
Aldo A. Ferri

Abstract The dynamic behavior of a beam-like structure undergoing transverse vibration and subjected to a displacement-dependent dry friction force is examined. In Part I, the beam is modeled by a single mode while Part II considers multi-mode representations. The displacement dependence in each case is caused by a ramp configuration that allows the normal force across the sliding interface to increase linearly with slip displacement. The system is studied first by using first-order harmonic balance and then by using a time integration method. The stick-slip behavior of the system is also studied. Even though the only source of damping is dry friction, the system is seen to exhibit “viscous-like” damping characteristics. A strong dependence of the equivalent natural frequency and damping ratio on the displacement amplitude is an interesting result. It is shown that for a given set of parameter values, an optimal ramp angle exists that maximizes the equivalent damping ratio. The appearance of two dynamic response solutions at certain system and forcing parameter values is also seen. Results suggest that the overall characteristics of mechanical systems may be improved by properly configuring frictional interfaces to allow normal forces to vary with displacement.


2014 ◽  
Vol 30 (2) ◽  
pp. 867-889 ◽  
Author(s):  
Jui-Liang Lin ◽  
Manh-Tien Bui ◽  
Keh-Chyuan Tsai

This paper proposes a simple approach to the generalized optimal locations of linear viscous dampers in elastic two-way asymmetrical buildings under bi-directional ground excitations. The control target used in this optimization process is to maximize the average dissipation rate of the overall strain energy of the two-way asymmetrical building under the ground excitation of two bi-directional unit impulses. The proposed control target, referred to as the smeared damping ratio, is an intrinsic property of the building system. Two advantages of the proposed approach appeal to engineering practice. First, the proposed approach does not require a complicated optimization algorithm. Second, due to the employment of an intrinsic property rather than a certain response parameter as the target performance index, the optimal damper locations resulting from the proposed approach are generalized, which are independent on the characteristics of input ground motions.


2020 ◽  
pp. 107754632094378
Author(s):  
Haiping Liu ◽  
Kaili Xiao ◽  
PengPeng Zhao ◽  
Dongmei Zhu

Stiffness and damping of a structure usually show the opposite change so that the resonant frequency and the static load bearing capacity of a mechanical system often exhibit contradiction. To solve this dilemma, a novel high-damping oscillator which is constructed by a nested diamond structure with the purpose of enhancing the damping property is proposed in this study without reducing the overall systematic stiffness. The mathematical model and geometrical relationships are established at first. And then, the steady-state solutions under base excitation are derived by using the harmonic balance method and further verified by numerical simulation. In addition, the effects of some design parameters on the equivalent damping ratio for the high-damping oscillator are studied to reveal the nonlinear characteristic. Besides, the natural frequency of the nonlinear oscillator is also presented and investigated. By using the displacement transmissibility and comparing with the traditional linear isolator with the same overall stiffness, the vibration suppression performance of the high-damping oscillator is addressed. The obtained calculating results demonstrate that the vibration control performance of the high-damping oscillator outperforms the linear counterpart around resonant frequency. Moreover, the influences of systematic parameters of the high-damping oscillator for the base excitation case on the vibration transmissibility are also discussed, respectively. Finally, an experimental campaign is conducted on an in-house-built test rig to corroborate the accuracy of the analytical solutions of the high-damping oscillation system. The results discussed in this study provide a useful guideline, which can help to design this class of high-damping oscillation system.


2014 ◽  
Vol 638-640 ◽  
pp. 1952-1955
Author(s):  
Q. Rong ◽  
Yan Sheng ◽  
Shi Xin Liu

Series isolation system consists of rubber isolation bearings and composite disk springs, determination method of vertical stiffness and vertical damping of isolation layer is given. Entering the near-fault vertical seismic waves, the affect of isolation layer parameters and earthquake intensity on the isolation effect is studied. Studies have shown that the vertical isolation effect increases with the increase of vertical damping ratio. When the damping ratio reaches a certain value, the isolated effect leveles off. When calculating model is adopted as the hierarchical model, vertical isolation effect has nothing to do with the increases of earthquake intensity.


Author(s):  
Seyed Kazem Sadat Shokouhi ◽  
Azam Dolatshah ◽  
Hamid Reza Vosoughifar ◽  
Yousef Rahnavard

Experiences of previous earthquakes demonstrate that lifelines have no proper performance exposed to Near-Fault (NF) earthquakes. Due to considerable effects of NF earthquakes and recommendation of the related design codes such as FEMA, evaluating the effects of these earthquakes on the pipelines is so important. In this research, the optimal placement of the viscous dampers in the water pipeline network subjected to NF earthquakes has been studied using Genetic Algorithm (GA). For this purpose, the water pipeline network of a zone in Tehran city was selected as a case study and was modeled using the Finite Element Method (FEM). Then, the nonlinear time-history analysis was undertaken via seismic scaled records of NF earthquakes. The obtained results indicated the critical points of network which were failed due to applied seismic waves. However, due to economical and technical issues, the optimal damper placement at critical points is necessary; all of the mentioned points were considered for optimization procedure using GA. Then, the viscous dampers were installed in the acquired optimal points. Eventually, a statistical test demonstrated optimum performance of the water pipelines network equipped with viscous dampers under NF earthquakes.


2013 ◽  
Vol 740 ◽  
pp. 721-727
Author(s):  
Wen Jing Nie ◽  
Yu Bai ◽  
Hao Wei Kuang

The increase in the structural damping ratio can make the degree of seismic response lower, while the damping ratio causes the seismic response differently in the different national specification. The paper first introduces the principle of equivalent damping ratio of the seismic response calculation methods in seismic specification of China and Japan, then analyzes and compares reduction of seismic response caused by the equivalent damping ratio in seismic specification of China and Japan by calculating data.


Sign in / Sign up

Export Citation Format

Share Document