Restoration of Bridge Networks after an Earthquake: Multicriteria Intervention Optimization

2012 ◽  
Vol 28 (2) ◽  
pp. 427-455 ◽  
Author(s):  
Paolo Bocchini ◽  
Dan M. Frangopol

This paper presents an optimization procedure for the restoration activities associated with the bridges of a transportation network severely damaged by an earthquake. The design variables are (i) the time intervals between the occurrence of the distress and the start of the interventions on each bridge of the network; and (ii) the restoration pace of the interventions, which represents a measure of the funding allocated to each bridge. The objectives of the optimization are the maximization of the network resilience, the minimization of the time required to reach a target functionality level, and the minimization of the total cost of the restoration activities. Because the first two objectives clearly conflict with the last one, the optimization procedure does not provide a unique solution, but an entire set of Pareto solutions. A numerical example involving a complex, existing transportation network in Santa Barbara, California, illustrates the capabilities of the proposed methodology.

2006 ◽  
Vol 34 (3) ◽  
pp. 170-194 ◽  
Author(s):  
M. Koishi ◽  
Z. Shida

Abstract Since tires carry out many functions and many of them have tradeoffs, it is important to find the combination of design variables that satisfy well-balanced performance in conceptual design stage. To find a good design of tires is to solve the multi-objective design problems, i.e., inverse problems. However, due to the lack of suitable solution techniques, such problems are converted into a single-objective optimization problem before being solved. Therefore, it is difficult to find the Pareto solutions of multi-objective design problems of tires. Recently, multi-objective evolutionary algorithms have become popular in many fields to find the Pareto solutions. In this paper, we propose a design procedure to solve multi-objective design problems as the comprehensive solver of inverse problems. At first, a multi-objective genetic algorithm (MOGA) is employed to find the Pareto solutions of tire performance, which are in multi-dimensional space of objective functions. Response surface method is also used to evaluate objective functions in the optimization process and can reduce CPU time dramatically. In addition, a self-organizing map (SOM) proposed by Kohonen is used to map Pareto solutions from high-dimensional objective space onto two-dimensional space. Using SOM, design engineers see easily the Pareto solutions of tire performance and can find suitable design plans. The SOM can be considered as an inverse function that defines the relation between Pareto solutions and design variables. To demonstrate the procedure, tire tread design is conducted. The objective of design is to improve uneven wear and wear life for both the front tire and the rear tire of a passenger car. Wear performance is evaluated by finite element analysis (FEA). Response surface is obtained by the design of experiments and FEA. Using both MOGA and SOM, we obtain a map of Pareto solutions. We can find suitable design plans that satisfy well-balanced performance on the map called “multi-performance map.” It helps tire design engineers to make their decision in conceptual design stage.


2014 ◽  
Vol 496-500 ◽  
pp. 429-435
Author(s):  
Xiao Ping Zhong ◽  
Peng Jin

Firstly, a two-level optimization procedure for composite structure is investigated with lamination parameters as design variables and MSC.Nastran as analysis tool. The details using lamination parameters as MSC.Nastran input parameters are presented. Secondly, with a proper equivalent stiffness laminate built to substitute for the lamination parameters, a two-level optimization method based on the equivalent stiffness laminate is proposed. Compared with the lamination parameters-based method, the layer thicknesses of the equivalent stiffness laminate are adopted as continuous design variables at the first level. The corresponding lamination parameters are calculated from the optimal layer thicknesses. At the second level, genetic algorithm (GA) is applied to identify an optimal laminate configuration to target the lamination parameters obtained. The numerical example shows that the proposed method without considering constraints of lamination parameters can obtain better optimal results.


Author(s):  
Pierre Duysinx ◽  
WeiHong Zhang ◽  
HaiGuang Zhong ◽  
Pierre Beckers ◽  
Claude Fleury

Abstract A robust and automatic shape optimization procedure is presented in this paper, which incorporates recent developments in the field of computer-aided design (CAD) of mechanical structures, such as geometric modelling, automatic selection of independent design variables, sensitivity analysis using reliable mesh perturbation schemes, error estimation and adaptive mesh refinement. A numerical example is given to show the efficiency of the procedure.


Author(s):  
Hongwei Song ◽  
Mingjun Li ◽  
Chenguang Huang ◽  
Xi Wang

This paper focuses on thermal-structural analysis and lightweight design of actively-cooled panels reinforced by low density lattice-framed material (LFM) truss cores. Numerical models for actively-cooled panels are built up with parametric codes to perform the coupled thermal-structural analysis, considering the internal thermal environment of convective heat transfer in the combustor and convective heat transfer in the cooling channel, and internal pressures from the combustion gas and the coolant. A preliminary comparison of the LFM truss reinforced actively-cooled panel and the non-reinforced panel demonstrates that the thermal-structural behavior is significantly improved. Then, an optimization procedure is carried out to find the lightest design while satisfying thermal deformation and plastic strain constraints, with thicknesses of face sheets and topology parameters of LFM truss as design variables. The optimization result demonstrates that, compared with the non-reinforced actively-cooled panels, weight reduction for the panel reinforced by LFM truss may reach 19.6%. We have also fabricated this type of actively-cooled panel in the laboratory level, and the specimen shows good mechanical behaviors.


2005 ◽  
Vol 15 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Leo Liberti ◽  
Edoardo Amaldi ◽  
Francesco Maffioli ◽  
Nelson Maculan

The problem of finding a fundamental cycle basis with minimum total cost in a graph arises in many application fields. In this paper we present some integer linear programming formulations and we compare their performances, in terms of instance size, CPU time required for the solution, and quality of the associated lower bound derived by solving the corresponding continuous relaxations. Since only very small instances can be solved to optimality with these formulations and very large instances occur in a number of applications, we present a new constructive heuristic and compare it with alternative heuristics.


Author(s):  
Pham Dinh Nguyen ◽  
Quang-Viet Vu ◽  
George Papazafeiropoulos ◽  
Hoang Thi Thiem ◽  
Pham Minh Vuong ◽  
...  

This paper proposes an optimization procedure for maximization of the biaxial buckling load of laminated composite plates using the gradient-based interior-point optimization algorithm. The fiber orientation angle and the thickness of each lamina are considered as continuous design variables of the problem. The effect of the number of layers, fiber orientation angles, thickness and length to thickness ratios on the buckling load of the laminated composite plates under biaxial compression is investigated. The effectiveness of the optimization procedure in this study is compared with previous works.


2014 ◽  
Vol 24 (2) ◽  
pp. 237-248 ◽  
Author(s):  
Jones Chuang ◽  
Peter Chu

This research contributes to the improvement of the optimal headway solution for the transit performance functions (e. g., minimize total cost; maximize social welfare) derived from the traffic model proposed by Hendrickson. The purpose of this paper is threefold. First, we prove that that model has a unique solution for headway. Second, we offer a formulated approximation for headway. Third, numerical examples illustrate that our formulated approximation performs more accurately than the Hendrickson?s.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Hong Zhou

The hybrid discretization model for topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. Each design cell is further subdivided into triangular analysis cells. This hybrid discretization model allows any two contiguous design cells to be connected by four triangular analysis cells whether they are in the horizontal, vertical, or diagonal direction. Topological anomalies such as checkerboard patterns, diagonal element chains, and de facto hinges are completely eliminated. In the proposed topology optimization method, design variables are all binary, and every analysis cell is either solid or void to prevent the gray cell problem that is usually caused by intermediate material states. Stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum and to avoid the need to choose the initial guess solution and conduct sensitivity analysis. The obtained topology solutions have no point connection, unsmooth boundary, and zigzag member. No post-processing is needed for topology uncertainty caused by point connection or a gray cell. The introduced hybrid discretization model and the proposed topology optimization procedure are illustrated by two classical synthesis examples of compliant mechanisms.


Author(s):  
F. Zhang ◽  
B. J. Gilmore ◽  
A. Sinha

Abstract Tolerance allocation standards do not exist for mechanical systems whose response are time varying and are subjected to discontinuous forcing functions. Previous approaches based on optimization and numerical integration of the dynamic equations of motion encounter difficulty with determining sensitivities around the force discontinuity. The Alternating Frequency/Time approach is applied here to capture the effect of the discontinuity. The effective link length model is used to model the system and to account for the uncertainties in the link length, radial clearance and pin location. Since the effective link length model is applied, the equations of motion for the nominal system can be applied for the entire analysis. Optimization procedure is applied to the problem where the objective is to minimize the manufacturing costs and satisfy the constraints imposed on mechanical errors and design variables. Examples of tolerance allocation are presented for a single cylinder internal combustion engine.


Author(s):  
Sivakumar Sundaresan ◽  
Kosuke Ishii ◽  
Donald R. Houser

Abstract This paper describes a procedure that incorporates manufacturing and operational variances to achieve designs with robust and optimal performance. The procedure optimizes the expected value of a performance characteristic subject to a set of constraints. It uses concepts from statistical design of experiments to approximate the expected value of a performance characteristic. The procedure incorporates uncertainties in design variables and variations in constraints due to uncertainty in design variables. This paper discusses the following three methods to incorporate variations in constraints: 1) A method using heuristics that evaluates constraints at the worst combinations of design variables, 2) A method with built-in constraint variation that models constraints using first order Taylor expansion, and 3) A method based on differentiating KKT optimality conditions. The design of spur and helical gears with minimum transmission error serves as the target application. The key gear design research issue is to determine the optimal combination of geometric design variables like number of teeth, pressure angle that minimizes transmission error subject to constraints like minimum number of teeth to avoid undercut and maximum bending stress.


Sign in / Sign up

Export Citation Format

Share Document