Preclinical antitumor activity and mechanisms of action of apricoxib, a clinical COX-2 inhibitor.

2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 543-543
Author(s):  
F. Burrows

543 Background: Apricoxib, a selective COX-2 inhibitor, is currently in phase II trials, but its anticancer mechanisms of action could be better defined. Apricoxib inhibits COX-2 enzymatic activity and suppresses production of PGE2 and VEGF at low nanomolar concentrations but also directly inhibits tumor cell proliferation and survival with 10-20μM potency. In this study we characterized the in vivo activity of apricoxib in xenograft models of lung, breast and colorectal carcinoma. Also, we examined the relationship between the PK, PD and antitumor activity and the effect of the drug on both tumor cell-autonomous functions and aspects of the tumor-host relationship in the HT29 model. Methods: Human tumor xenografts were grown in nude mice and apricoxib was given daily PO. Drug levels were quantified by LC-MS and VEGF levels by ELISA. Vessel density, apoptosis, proliferation and EMT were assessed by immunohistochemistry. Results: Apricoxib significantly retarded tumor growth in NSCLC models and also enhanced the efficacy of SOC drugs in breast and lung tumors. In the HT29 model, the drug was active at both doses tested. Drug concentrations in plasma and tumors peaked at 2-10 μM within an hour and decreased rapidly to submicromolar levels but concentrations persisted above the active concentration for inhibition of PGE2 production for >24h. This strongly indicates that apricoxib exerts its in vivo activity via blockade of COX-2-dependent PGE2 production. Plasma VEGF levels decreased to zero for 6h post-dose, but returned to baseline by 24h. CD31 and Endomucin staining revealed no drug effect on microvessel density, although the percentage of immature vessels was reduced, as determined by pericyte coverage/NG2 expression. Apoptosis was significantly increased by TUNEL in apricoxib-treated tumors. PCNA analysis revealed a decrease in proliferating cells. ECAD expression was significantly increased in treated animals, whereas ZEB1 expression was lower, suggesting that COX-2 activity also plays an important role in EMT. Conclusions: Apricoxib possesses antitumor activity as a single agent and in combination. In the HT29 model, apricoxib inhibits tumor proliferation and survival, normalizes tumor vasculature and reverses EMT. [Table: see text]

2001 ◽  
Vol 87 (6) ◽  
pp. 407-416 ◽  
Author(s):  
Gino Beggiolin ◽  
Luca Crippa ◽  
Ernesto Menta ◽  
Carla Manzotti ◽  
Ennio Cavalletti ◽  
...  

With the aim to provide second-generation anthracenedione analogues endowed with reduced side effects and a wider spectrum of action than mitoxantrone and doxorubicin, a large number of new molecules bearing nitrogen atoms in the chromophore was synthesized and screened in vitro and in vivo. From this screening, BBR 2778 (6,9-bis[(2-aminoethyl)amino] benzo[g]isoquinoline-5,10-dione dimaleate) emerged as the most interesting compound. BBR 2778 was tested in vitro on several murine and human tumor cell lines and showed cytotoxic potency lower than that of mitoxantrone and doxorubicin. BBR 2778 was more cytotoxic in leukemia and lymphoma cell lines than in solid tumor cell lines. Although against in vivo models BBR 2778 was less potent than mitoxantrone and doxorubicin, its antitumor activity was equal or superior (in certain tumor models) to that of the above standard compounds. In particular, BBR 2778 was curative against L1210 murine leukemia and YC-8 murine lymphoma. Moreover, it showed an antitumor activity comparable to that of mitoxantrone and doxorubicin on solid tumors. No cardiotoxic effect of BBR 2778 in animals not pretreated with anthracyclines was observed compared to standards. In light of its spectrum of activity and marked efficacy against lymphomas and leukemias over a wide dose range, together with its lack of delayed cardiotoxicity, BBR 2778 has been entered in clinical studies.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2008 ◽  
Vol 14 (15) ◽  
pp. 4821-4829 ◽  
Author(s):  
Bart Burington ◽  
Bart Barlogie ◽  
Fenghuang Zhan ◽  
John Crowley ◽  
John D. Shaughnessy

1984 ◽  
Vol 2 (4) ◽  
pp. 282-286 ◽  
Author(s):  
S E Salmon ◽  
L Young ◽  
B Soehnlen ◽  
R Liu

The new anthracycline analog, esorubicin (4'deoxy-doxorubicin, ESO), was tested against fresh biopsies of human solid tumors in vitro in clonogenic assay and the results were contrasted to those obtained with doxorubicin (DOX). ESO appeared to be significantly more potent on a weight basis than DOX in these studies, and exhibited a spectrum of antitumor activity in vitro that was in general qualitatively similar to that observed with DOX. In vitro antitumor activity was observed in a wide variety of human cancers including anthracycline-sensitive tumor types. ESO has previously been reported to have decreased cardiac toxicity in preclinical models as compared to DOX. Comparative testing of these anthracyclines on granulocyte-macrophage colony-forming units (GM-CFUs) and tumor colony forming units (TCFUs) indicated that the in vitro GM-CFU assay is more sensitive to these myelosuppressive drugs than are TCFUs, and underscores the need for in vivo studies to determine normal tissue toxicity and the therapeutic index of a drug. Early results of phase I studies suggest that with respect to myelosuppression, the maximally tolerated dose of ESO will be about half that of DOX. The increased in vitro antitumor potency observed for ESO and a spectrum of activity (even at one half the dose of DOX) supports the broad testing of ESO in the clinic to determine whether it will prove to be a more effective and less toxic anthracycline.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1592
Author(s):  
Surendra R. Punganuru ◽  
Viswanath Arutla ◽  
Wei Zhao ◽  
Mehrdad Rajaei ◽  
Hemantkumar Deokar ◽  
...  

There is a desperate need for novel and efficacious chemotherapeutic strategies for human brain cancers. There are abundant molecular alterations along the p53 and MDM2 pathways in human glioma, which play critical roles in drug resistance. The present study was designed to evaluate the in vitro and in vivo antitumor activity of a novel brain-penetrating small molecule MDM2 degrader, termed SP-141. In a panel of nine human glioblastoma and medulloblastoma cell lines, SP-141, as a single agent, potently killed the brain tumor-derived cell lines with IC50 values ranging from 35.8 to 688.8 nM. Treatment with SP-141 resulted in diminished MDM2 and increased p53 and p21cip1 levels, G2/M cell cycle arrest, and marked apoptosis. In intracranial xenograft models of U87MG glioblastoma (wt p53) and DAOY medulloblastoma (mutant p53) expressing luciferase, treatment with SP-141 caused a significant 4- to 9-fold decrease in tumor growth in the absence of discernible toxicity. Further, combination treatment with a low dose of SP-141 (IC20) and temozolomide, a standard anti-glioma drug, led to synergistic cell killing (1.3- to 31-fold) in glioma cell lines, suggesting a novel means for overcoming temozolomide resistance. Considering that SP-141 can be taken up by the brain without the need for any special delivery, our results suggest that SP-141 should be further explored for the treatment of tumors of the central nervous system, regardless of the p53 status of the tumor.


1982 ◽  
Vol 68 (5) ◽  
pp. 365-371 ◽  
Author(s):  
Ornella Marelli ◽  
Alberto Mantovani ◽  
Paola Franco ◽  
Angelo Nicotin

Murine leukemic cells, after in vivo treatment with antineoplastic drugs, have been shown to express new antigenic specificities that were not detectable on parental cells and that were heritable after the withdrawal of drug treatment. A study was conducted of macrophage antitumor activity triggered by LY/DTIC cells, a subline of LY murine lymphoma, antigenically altered by the drug DTIC. In vitro non-specific inhibition of tumor cell growth was exhibited by spleen and peritoneal macrophages from mice previously challenged with viable LY/DTIC. Peritoneal macrophages from LY/DTIC immune animals showed moderate, although significant lytic activity against unrelated tumor target cells. Supernatants from mixed lymphocyte-tumor cell cultures, in which LY/DTIC immune lymphocytes and LY/DTIC tumor cells had been cultured, rendered normal macrophages non-specifically growth inhibitory for tumor cells.


Sign in / Sign up

Export Citation Format

Share Document