Preclinical efficacy of the combination of olaparib plus carboplatin with vandetanib in triple-negative breast cancer.

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13579-e13579 ◽  
Author(s):  
Nandini Dey ◽  
Hui Wu ◽  
Yuliang Sun ◽  
Pradip De ◽  
Brian Leyland-Jones

e13579 Background: BRCA1-deficiency confers sensitivity to PARP1 inhibition (alone or in combination with platinum compounds) in triple-negative breast cancer (TNBC). Recent understanding of the biology of TNBC tumor cells has recognized molecular targets suitable for treatment with targeted therapeutics including cell surface RTK(s), such as EGFR. Methods: We studied the effect of combination of PARP inhibitor, (olaparib) plus carboplatin with a dual EGFR/VEGFR inhibitor, vandetanib in a TNBC model in both in vitro and in vivo settings. We tested the effects of drug combinations on (a) cell signaling marker(s) of survival/proliferation/apoptosis, (b) adhesion-dependent and clonogenic survival, and (c) different phenotypes (migration, invasion, vascular mimicry, and cord formation) using TNBC cell and HUVEC cells. The combination of PARP1 inhibition and EGFR/VEGFR inhibition was evaluated in tumor-bearing athymic mice treated with olaparib plus carboplatin and vandetanib. Results: Data showed that, (1) EC50s for vandetanib ranged from 5-15 µM, (2) vandetanib (10 µM) inhibited phosphorylation of AKT (S473 & T308), S6RP, 4EBP1 and ERK, (3) effect of olaparib on TNBC cell survival can be effectively studied in vitro by clonogenic assay, (4) TNBC cell lines exhibited higher sensitivity to vandetanib in clonogenic assay when combined with 10 µM fixed dose of olaparib, and (5) a combination of vandetanib with olaparib plus carboplatin time dependently increased caspase-3 and PARP cleavage, inhibited vascular mimicry, blocked fibronectin-directed migration, and suppressed clonogenic growth in TNBC cells.Vandetanib blocked (a) cord formation, (b) vitronectin-directed migration, and (c) HIF-1alpha accumulation and phosphorylation of proliferation markers (AKT, 4EBP1, and ERK) in HUVEC cells. Conclusions: Anti-proliferative/pro-apoptotic, and anti-migratory/invasive effects of vandetanib (alone or in combination with carboplatin plus olaparib) were observed both in tumor cells and in endothelial cells. We are currently studying in vivo the effect of combining olaparib plus carboplatin with vandetanib, in xenograft model the results of which will be presented in the meeting.

2021 ◽  
Vol 9 (10) ◽  
pp. e003468
Author(s):  
Huicheng Liu ◽  
Lili Bai ◽  
Liu Huang ◽  
Na Ning ◽  
Lin Li ◽  
...  

BackgroundTriple negative breast cancer (TNBC) is a subtype of breast cancers with poor prognosis and targeted drug therapies are limited. To develop novel and efficacious therapies for TNBC, we developed a bispecific antibody F7AK3 that recognizes both trophoblast cell surface antigen 2 (TROP2) and CD3 and evaluated its antitumor activities both in vitro and in vivo.MethodsThe binding affinities of F7AK3 to the two targets, TROP2 and CD3, were evaluated by surface plasmon resonance. Binding of F7AK3 to TNBC cells and T cells were evaluated by flow cytometry. Immunofluorescent staining was performed to demonstrate the interactions between T cells with TNBC cells. The cytotoxicity of T cells against TNBC cell lines and primary tumor cells mediated by F7AK3 were determined in vitro. In vivo antitumor activity of F7AK3 was investigated in a xenograft TNBC tumor model, using immunodeficient mice that were reconstituted with human peripheral blood mononuclear cells.ResultsWe demonstrated that F7AK3 binds specifically to human TROP2 and CD3 antigens, as well as TNBC cell lines and primary tumor cells. Human T cells can only be activated by F7AK3 in the presence of target tumor cells. F7AK3 recruits T cells to TROP2+ tumor cells in vitro and into tumor tissues in vivo. Antitumor growth activity of F7AK3 is observed in a xenograft TNBC tumor model.ConclusionThis study showed the antitumor potential of an anti-TROP2xCD3 bispecific antibody F7AK3 to TNBC tumor cells both in vitro and in vivo. These data demonstrate that F7AK3 has the potential to treat TNBC patients, which warrants further preclinical and clinical evaluation of the F7AK3 in advanced or metastatic TNBC patients.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15047-e15047
Author(s):  
Surender Kharbanda ◽  
Anees Mohammad ◽  
Sachchidanand Tiwari ◽  
Neha Mehrotra ◽  
Sireesh Appajosyula ◽  
...  

e15047 Background: Triple negative breast cancer (TNBC) accounts for about 10-15% of all breast cancers and differ from other types of invasive breast cancers in that they grow and spread faster. TNBCs have limited treatment options and a worse prognosis. Therapy with anthracyclines considered to be one of the most effective agents in the treatment. Unfortunately, resistance to anthracycline therapy is very common due to drug efflux mediated by overexpression of ABC transporter. Pirarubicin (PIRA), an analogue of doxorubicin (DOX), is approved in Japan, Korea and China and is shown to be less cardiotoxic than DOX. Recent studies suggest that cancer stem cells (CSCs) play an important role in tumorigenesis and biology of TNBC. Targeting CSCs may be a promising, novel strategy for the treatment of this aggressive disease. Recent studies have shown that salinomycin (SAL) preferentially targets the viability of CSCs. Methods: SAL and PIRA were co-encapsulated in polylactic acid (PLA)-based block copolymeric nanoparticles (NPs) to efficiently co-deliver these agents to treat TNBC cells. Results: Generated SAL-PIRA co-encapsulated dual drug-loaded NPs showed an average diameter of 110 ± 7 nm, zeta potential of -12.5 mV and PDI of less than 0.25. Both of these anti-cancer agents showed slow and sustained release profile in non-physiological buffer (PBS, pH 7.4) from these dual drug-encapsulated NPs. Additionally, multiple ratios (PIRA:SAL = 3:1, 1:1, 1:3) were encapsulated to generate diverse dual drug-loaded NPs. The results demonstrate that, in contrast to 1:1 and 3:1, treatment of TNBC cells with 1:3 ratio of PIRA:SAL dual drug-loaded NPs, was associated with significant inhibition of growth in vitro in multiple TNBC cell lines. Interestingly, PIRA:SAL (1:3) was synergistic as compared to either SAL- or PIRA single drug-loaded NPs. The IC50 of PIRA and SAL in single drug-encapsulated NPs is 150 nM and 700 nM respectively in MDA-MB-468. Importantly, the IC50 of PIRA in dual drug-encapsulated NPs dropped down to 30 nM (5-fold). Similar results were obtained in SUM-149 TNBC cell line. Studies are underway to evaluate in vivo biological activity of PIRA:SAL (1:3) on tumor growth in a TNBC xenograft mice model. Conclusions: These results demonstrate that a novel dual drug-loaded NP formulation of PIRA and SAL in a unique ratio of 1:3 represents an approach for successful targeting of CSCs and bulk tumor cells in TNBC and potentially other cancer types.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yu-Chen Cai ◽  
Hang Yang ◽  
Hong-Bo Shan ◽  
Hui-Fang Su ◽  
Wen-Qi Jiang ◽  
...  

Background. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphate-4 (PFKFB4) is a key factor that plays an important role in tumorigenesis. However, its role in triple-negative breast cancer (TNBC) progression needs to be further validated. We investigated whether PFKFB4 is directly involved in the oncogenic signaling networks of TNBC. Methods. First, we assessed the expression level of PFKFB4 in tumor tissue specimens by immunohistochemistry and evaluated its prognostic value. Next, the effect of PFKFB4 on TNBC cell growth and associated mechanisms were investigated. Finally, the results were further verified in vivo. Results. We found that PFKFB4 overexpression was associated with an unfavorable prognosis in TNBC patients. PFKFB4 was overexpressed in TNBC cell lines in hypoxic environments, and its overexpression promoted tumor progression in vitro and in vivo. Further analyses demonstrated that the possible mechanism might be that PFKFB4 overexpression facilitates TNBC progression by enhancing the G1/S phase transition by increasing the protein level of CDK6 and phosphorylation of Rb. Conclusions. These data suggest that PFKFB4 plays significant roles in the tumorigenesis and development of TNBC.


2019 ◽  
Vol 27 (4) ◽  
pp. 1186-1199 ◽  
Author(s):  
Leire Arreal ◽  
Marco Piva ◽  
Sonia Fernández ◽  
Ajinkya Revandkar ◽  
Ariane Schaub- Clerigué ◽  
...  

Abstract Oncogene addiction postulates that the survival and growth of certain tumor cells is dependent upon the activity of one oncogene, despite their multiple genetic and epigenetic abnormalities. This phenomenon provides a foundation for molecular targeted therapy and a rationale for oncogene-based stratification. We have previously reported that the Promyelocytic Leukemia protein (PML) is upregulated in triple negative breast cancer (TNBC) and it regulates cancer-initiating cell function, thus suggesting that this protein can be therapeutically targeted in combination with PML-based stratification. However, the effects of PML perturbation on the bulk of tumor cells remained poorly understood. Here we demonstrate that TNBC cells are addicted to the expression of this nuclear protein. PML inhibition led to a remarkable growth arrest combined with features of senescence in vitro and in vivo. Mechanistically, the growth arrest and senescence were associated to a decrease in MYC and PIM1 kinase levels, with the subsequent accumulation of CDKN1B (p27), a trigger of senescence. In line with this notion, we found that PML is associated to the promoter regions of MYC and PIM1, consistent with their direct correlation in breast cancer specimens. Altogether, our results provide a feasible explanation for the functional similarities of MYC, PIM1, and PML in TNBC and encourage further study of PML targeting strategies for the treatment of this breast cancer subtype.


2021 ◽  
Author(s):  
Wentong Fang ◽  
Chengheng Liao ◽  
Rachel Shi ◽  
Jeremy Simon ◽  
Travis Ptacek ◽  
...  

Triple-negative breast cancer (TNBC) is an aggressive and highly lethal disease, which warrants the critical need to identify new therapeutic targets. We show that Zinc Fingers And Homeoboxes 2 (ZHX2) is amplified or overexpressed in TNBC cell lines and patients. Functionally, depletion of ZHX2 inhibited TNBC cell growth and invasion in vitro, orthotopic tumor growth and spontaneous lung metastasis in vivo. Mechanistically, ZHX2 bound with hypoxia inducible factor (HIF) family members and positively regulated HIF1α activity in TNBC. Integrated ChIP-Seq and gene expression profiling demonstrated that ZHX2 co-occupied with HIF1α on transcriptionally active promoters marked by H3K4me3 and H3K27ac, thereby promoting gene expression. Furthermore, multiple residues (R491, R581 and R674) on ZHX2 are important in regulating its phenotype, which correspond with their roles on controlling HIF1α activity in TNBC cells. These studies establish that ZHX2 activates oncogenic HIF1α signaling, therefore serving as a potential therapeutic target for TNBC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elizabeth Garcia ◽  
Ismat Luna ◽  
Kaya L. Persad ◽  
Kate Agopsowicz ◽  
David A. Jay ◽  
...  

AbstractInvasive breast cancer (BrCa) is predicted to affect 1 in 9 women in a lifetime;1 in 32 will die from this disease. The most aggressive forms of BrCa, basal-like/triple-negative phenotype (TNBC), are challenging to treat and result in higher mortality due high number of metastatic cases. There is a paucity of options for TNBC treatment, which highlights the need for additional innovative treatment approaches. NIH-III mice were injected in the abdominal mammary fat pad with luciferase-expressing derivative of the human TNBC cell line, MDA-MB-231 cells. Animals were gavage-fed with nitrofen at the doses of 1, 3 or 6 mg/kg/alternate days. However, several structural properties/components of nitrofen raise concerns, including its high lipophilicity (cLogP of nearly 5) and a potential toxophore in the form of a nitroarene group. Therefore, we developed analogues of nitrofen which lack the nitro group and/or have replaced the diaryl ether linker with a diarylamine that could allow modulation of polarity. In vitro anti-invasiveness activity of nitrofen analogues were evaluated by quantitative determination of invasion of MDA-MB-231-Luciferase cells through Matrigel using a Boyden chamber. Our in vivo data show that nitrofen efficiently blocks TNBC tumor metastasis. In vitro data suggest that this is not due to cytotoxicity, but rather is due to impairment of invasive capacity of the cells. Further, using an in vitro model of EMT, we show that nitrofen interferes with the process of EMT and promotes mesenchymal to epithelial transformation. In addition, we show that three of the nitrofen analogues significantly reduced invasive potential of TNBC cells, which may, at least partially, be attributed to the analogues’ ability to promote mesenchymal to epithelial-like transformation of TNBC cells. Our study shows that nitrofen, and more importantly its analogues, are significantly effective in limiting the invasive potential of TNBC cell lines with minimal cytotoxic effect. Further, we demonstrate that nitrofen its analogues, are very effective in reversing mesenchymal phenotype to a more epithelial-like phenotype. This may be significant for the treatment of patients with mesenchymal-TNBC tumor subtype who are well known to exhibit high resistance to chemotherapy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yi-Te Chou ◽  
Chih-Yu Lin ◽  
Jyun-Wei Wen ◽  
Ling-Chun Hung ◽  
Ying-Feng Chang ◽  
...  

Abstract Background Areas of hypoxia are often found in triple-negative breast cancer (TNBC), it is thus more difficult to treat than other types of breast cancer, and may require combination therapies. A new strategy that combined bioreductive therapy with photodynamic therapy (PDT) was developed herein to improve the efficacy of cancer treatment. Our design utilized the characteristics of protoporphyrin IX (PpIX) molecules that reacted and consumed O2 at the tumor site, which led to the production of cytotoxic reactive oxygen species (ROS). The low microenvironmental oxygen levels enabled activation of a bioreductive prodrug, tirapazamine (TPZ), to become a toxic radical. The TPZ radical not only eradicated hypoxic tumor cells, but it also promoted therapeutic efficacy of PDT. Results To achieve the co-delivery of PpIX and TPZ for advanced breast cancer therapy, thin-shell hollow mesoporous Ia3d silica nanoparticles, designated as MMT-2, was employed herein. This nanocarrier designed to target the human breast cancer cell MDA-MB-231 was functionalized with PpIX and DNA aptamer (LXL-1), and loaded with TPZ, resulting in the formation of TPZ@LXL-1-PpIX-MMT-2 nanoVector. A series of studies confirmed that our nanoVectors (TPZ@LXL-1-PpIX-MMT-2) facilitated in vitro and in vivo targeting, and significantly reduced tumor volume in a xenograft mouse model. Histological analysis also revealed that this nanoVector killed tumor cells in hypoxic regions efficiently. Conclusions Taken together, the synergism and efficacy of this new therapeutic design was confirmed. Therefore, we concluded that this new therapeutic strategy, which exploited a complementary combination of PpIX and TPZ, functioned well in both normoxia and hypoxia, and is a promising medical procedure for effective treatment of TNBC.


Author(s):  
Xiuzhi Zhu ◽  
Li Chen ◽  
Binhao Huang ◽  
Xiaoguang Li ◽  
Liu Yang ◽  
...  

Abstract Background PARP inhibitors (PARPi) benefit only a fraction of breast cancer patients with BRCA mutations, and their efficacy is even more limited in triple-negative breast cancer (TNBC) due to clinical primary and acquired resistance. Here, we found that the efficacy of the PARPi olaparib in TNBC can be improved by combination with the CDK4/6 inhibitor (CDK4/6i) palbociclib. Methods We screened primary olaparib-sensitive and olaparib-resistant cell lines from existing BRCAmut/TNBC cell lines and generated cells with acquired olaparib resistance by gradually increasing the concentration. The effects of the PARPi olaparib and the CDK4/6i palbociclib on BRCAmut/TNBC cell lines were examined in both sensitive and resistant cells in vitro and in vivo. Pathway and gene alterations were assessed mechanistically and pharmacologically. Results We demonstrated for the first time that the combination of olaparib and palbociclib has synergistic effects against BRCAmut/TNBC both in vitro and in vivo. In olaparib-sensitive MDA-MB-436 cells, the single agent olaparib significantly inhibited cell viability and affected cell growth due to severe DNA damage. In olaparib-resistant HCC1937 and SUM149 cells, single-agent olaparib was ineffective due to potential homologous recombination (HR) repair, and the combination of olaparib and palbociclib greatly inhibited HR during the G2 phase, increased DNA damage and inhibited tumour growth. Inadequate DNA damage caused by olaparib activated the Wnt signalling pathway and upregulated MYC. Further experiments indicated that the overexpression of β-catenin, especially its hyperphosphorylation at the Ser675 site, activated the Wnt signalling pathway and mediated olaparib resistance, which could be strongly inhibited by combined treatment with palbociclib. Conclusions Our data provide a rationale for clinical evaluation of the therapeutic synergy of the PARPi olaparib and CDK4/6i palbociclib in BRCAmut/TNBCs with high Wnt signalling activation and high MYC expression that do not respond to PARPi monotherapy.


2020 ◽  
Author(s):  
XIUZHI ZHU ◽  
LI CHEN ◽  
Binhao Huang ◽  
Xiaoguang Li ◽  
Yang Liu ◽  
...  

Abstract Background: PARP inhibitors (PARPi) benefit only a fraction of breast cancer patients with BRCA mutations and their efficacy is even more limited in triple-negative breast cancer (TNBC) due to clinical primary and acquired resistance. Here, we found that the efficacy of PARPi in TNBC can be improved with CDK4/6 inhibitors (CDK4/6i).Methods: We screened primary PARPi-sensitive and resistant cell lines from existing BRCAmut/TNBC cell lines and generated cells with acquired PARPi resistance by gradually increasing the concentration. The effects of the PARPi olaparib and the CDK4/6i palbociclib on BRCAmut/TNBC cell lines were examined in both sensitive and resistant cells in vitro and in vivo. Pathway and gene alterations were assessed mechanistically and pharmacologically.Results: We demonstrated for the first time that the combination of PARPi and CDK4/6i has synergistic effects against BRCAmut/TNBC both in vitro and in vivo. In the PARPi-sensitive MB436 cells, the single agent olaparib significantly inhibited cell viability and affected cell growth due to severe DNA damage. In the PARPi-resistant HCC1937 and SUM149 cells, single-agent olaparib was ineffective due to potential homologous recombination (HR) repair, and the combination of PARPi and CDK4/6i greatly inhibited HR during the G2 phase, increased DNA damage and inhibited tumor growth. Inadequate DNA damage caused by PARPi activated the Wnt signaling pathway and upregulated MYC. Further experiments indicated that the overexpression of β-catenin, especially its hyperphosphorylation at the Ser675 site activated the Wnt signaling pathway and mediated PARPi resistance, which could be strongly inhibited by the combined treatment with CDK4/6i.Conclusions: Our data provide a rationale for the clinical evaluation of the therapeutic synergy of PARPi and CDK4/6i in BRCAmut/TNBCs with high Wnt signaling activation, high MYC expression and do not respond to PARPi monotherapy.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Wentong Fang ◽  
Chengheng Liao ◽  
Rachel Shi ◽  
Jeremy M Simon ◽  
Travis S Ptacek ◽  
...  

Triple-negative breast cancer (TNBC) is an aggressive and highly lethal disease, which warrants the critical need to identify new therapeutic targets. We show that Zinc Fingers and Homeoboxes 2 (ZHX2) is amplified or overexpressed in TNBC cell lines and patients. Functionally, depletion of ZHX2 inhibited TNBC cell growth and invasion in vitro, orthotopic tumor growth and spontaneous lung metastasis in vivo. Mechanistically, ZHX2 bound with hypoxia inducible factor (HIF) family members and positively regulated HIF1a activity in TNBC. Integrated ChIP-Seq and gene expression profiling demonstrated that ZHX2 co-occupied with HIF1a on transcriptionally active promoters marked by H3K4me3 and H3K27ac, thereby promoting gene expression. Among the identified ZHX2 and HIF1a co-regulated genes, overexpression of AP2B1, COX20, KDM3A, or PTGES3L could partially rescue TNBC cell growth defect by ZHX2 depletion, suggested that these downstream targets contribute to the oncogenic role of ZHX2 in an accumulative fashion. Furthermore, multiple residues (R491, R581 and R674) on ZHX2 are important in regulating its phenotype, which correspond with their roles on controlling ZHX2 transcriptional activity in TNBC cells. These studies establish that ZHX2 activates oncogenic HIF1a signaling, therefore serving as a potential therapeutic target for TNBC.


Sign in / Sign up

Export Citation Format

Share Document