Quantification of circulating clonal plasma cells (cPCs) via multiparametric flow cytometry (MFC) to identify patients with smoldering multiple myeloma (SMM) at high risk of progression.

2016 ◽  
Vol 34 (15_suppl) ◽  
pp. 8015-8015 ◽  
Author(s):  
Wilson I. Gonsalves ◽  
S. Vincent Rajkumar ◽  
Michael Timm ◽  
William Morice ◽  
Angela Dispenzieri ◽  
...  
Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2586-2592 ◽  
Author(s):  
Ernesto Pérez-Persona ◽  
María-Belén Vidriales ◽  
Gema Mateo ◽  
Ramón García-Sanz ◽  
Maria-Victoria Mateos ◽  
...  

Monoclonal gammopathy of uncertain significance (MGUS) and smoldering multiple myeloma (SMM) are plasma cell disorders with a risk of progression of approximately 1% and 10% per year, respectively. We have previously shown that the proportion of bone marrow (BM) aberrant plasma cells (aPCs) within the BMPC compartment (aPC/BMPC) as assessed by flow cytometry (FC) contributes to differential diagnosis between MGUS and multiple myloma (MM). The goal of the present study was to investigate this parameter as a marker for risk of progression in MGUS (n = 407) and SMM (n = 93). Patients with a marked predominance of aPCs/BMPC (≥ 95%) at diagnosis displayed a significantly higher risk of progression both in MGUS and SMM (P< .001). Multivariate analysis for progression-free survival (PFS) selected the percentage aPC/BMPC (≥ 95%) as the most important independent variable, together with DNA aneuploidy and immunoparesis, for MGUS and SMM, respectively. Using these independent variables, we have identified 3 risk categories in MGUS (PFS at 5 years of 2%, 10%, and 46%, respectively; P< .001) and SMM patients (PFS at 5 years of 4%, 46%, and 72%, respectively; P < .001). Our results show that multiparameter FC evaluation of BMPC at diagnosis is a valuable tool that could help to individualize the follow-up strategy for MGUS and SMM patients.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1935-1935 ◽  
Author(s):  
María-Victoria Mateos ◽  
Lucía López-Corral ◽  
Miguel Hernández ◽  
Pilar Giraldo ◽  
Javier De La Rubia ◽  
...  

Abstract Abstract 1935 Smoldering Multiple Myeloma (SMM) is an asymptomatic proliferative disorder of plasma cells (PCs) defined by a serum monoclonal component (MC) of 30 g/L or higher and/or 10% or more plasma cells in the bone marrow (BM), but no evidence of end-organ damage. There are several risk factors predicting high-risk of progression to symptomatic disease (>50% at 2 years): >10% of PCs in BM, serum MC >30g/L, >95% aberrant PCs by immunophenotyping, or abnormal free-light chains. Standard of care of SMM is close follow-up without treatment until progression disease. Several trials have evaluated the role of early treatment with convencional agents (melphalan), bisphosphonates and novel agents (thalidomide, anti-IL1a), with no clear benefit, but they didn't focus on high-risk patients. In this phase III trial, SMM patients at high-risk of progression were randomized to receive Len-dex as induction followed by Len alone as maintenance vs no treatment in order to evaluate whether the early treatment prolongs the time to progresión (TTP) to symptomatic disease. The high risk population was defined by the presence of both >PC 10% and MC >30g/L or if only one criterion was present, patients must have a proportion of aberrants PCs within the total PCsBM compartment by immunophenotyping of 95% plus immunoparesis. Len-dex arm received an induction treatment consisting on nine four-weeks cycles of lenalidomide at dose of 25 mg daily on days 1–21 plus dexamethasone at dose of 20 mg daily on days 1–4 and 12–15 (total dose: 160mg), followed by maintenance until progression disease with Lenalidomide at dose of 10 mg on days 1–21 every two months (ammended in May 2010 into monthly). The 124 planned patients were recruited between October 2006 and June 2010, and 118 were evaluables (three in Len-dex and three in therapeutic abstention arm didn't meet inclusion criteria). This second interim analysis was planned when all patients were recruited. According to baseline characteristics, both groups were well balanced. On an ITT analysis (n=57), based on IMWG criteria, the overall response rate during induction therapy was 75%, including 51% PR, 12% VGPR, 5% CR and 7% sCR. If we select the group of 33 patients who completed the nine induction cycles, the ORR was 91%, including 15% VGPR, 9% CR and 9% sCR. After a median of 8 cycles of maintenance therapy (1-15), the sCR increased to 16%. After a median follow-up of 16 months (range:1-33), four patients progressed to symptomatic disease in the Len-dex arm: two of them during maintenance therapy after 24 and 28 months from inclusion and the other two progressed 3 and 8 months after early discontinuation of the trial due to personal reasons. In addition, nine patients have developed biological progression during maintenance, but in all but one of these, Len has been able to control the disease without CRAB symptoms (median of 9·5 months (1-18)). In the therapeutic abstention arm, 21 out of 61 patients progressed to active MM. The estimated hazard ratio was 6·7 (95%CI= 2·3-19·9), corresponding to a median TTP from inclusion of 25 months for the not treatment arm vs median not reached in the treatment arm (p<0.0001). It should be noted that 10 out of these 21 patients developed bone lesions as a symptom of active MM. Deaths in the Len-dex and no treatment arms were 1 and 2, respectively (p=0·6). As far as toxicity is concerned, during induction therapy, no G4 adverse events (AEs) were reported with Len-dex; 1 pt developed G3 anemia, 4 patients G3 asthenia 2 patients G3 diarrhea and 1 patient G3 skin rash; 3 patients developped G2 DVT. During maintenance, no G4 AEs were reported and only 1 patient developed G3 infection. In conclusion, this second interim analysis shows that in high-risk SMM patients, delayed treatment resulted in early progression to symptomatic disease (median 25 months), while Len-dex as induction followed by Len as maintenance significantly prolonged the TTP (HR: 6·7), with excelent tolerability; moreover, biological progressions occurring under maintenance have remained controlled over a prolonged period of time. Disclosures: Mateos: Celgene: Honoraria. Off Label Use: Lenalidomide is not approved for the treatment of smoldering multiple myeloma. De La Rubia:Celgene: Honoraria. Rosiñol:Celgene: Honoraria. Lahuerta:Celgene: Honoraria. Palomera:Celgene: Honoraria. Oriol:Celgene: Honoraria. Garcia-Laraña:Celgene: Honoraria. Hernández:Celgene: Honoraria. Leal-da-Costa:Celgene: Honoraria. Alegre:Celgene: Honoraria. Quintana:Celgene: Employment. Baquero:Celgene: Employment. García:Celgene: Honoraria. San Miguel:Celgene: Honoraria.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3517-3517
Author(s):  
Ernesto Perez-Persona ◽  
María-Belén Vidriales ◽  
Gema Mateo ◽  
Ramón Garcia Sanz ◽  
Marivi Mateos ◽  
...  

Abstract Monoclonal Gammopathy of Uncertain Significance (MGUS) is a monoclonal disorder defined by the presence of a serum monoclonal protein <3g/dL, bone marrow plasma cells < 10% and absence of end-organ damage. The risk of progression to multiple myeloma (MM) is about 1% per year, and therefore these patients require long follow-up. Accordingly, the definition of new parameters that could be used for the identification of patients at risk of progression could be of great value. The aim of the present study is to evaluate the utility of multiparameter flow cytometry analysis of bone marrow (BM) plasma cells (PC) for predicting the risk of progression of MGUS patients. From January 1996 to September 2004, bone marrow aspirate samples from 350 patients, who fulfil the criteria of MGUS according to the International Myeloma Working Group criteria, were analysed by multiparametric flow cytometry. A specific gate on PC was performed based on CD138/CD38 expression and FSC/SSC characteristics and PC were immunophenotypically classified as normal (polyclonal) or aberrant (clonal) according to the expression of CD138, CD38, CD45, CD19 and CD56 antigens. Twenty seven patients (8 %) progressed to MM, with a median time to progression (TTP) of 46 months (range 9 to 109 months). Interestingly, the percentage of aberrant PC within the total BM PC compartment (aPC/BMPCc) clearly identify patients at different risk of progression. Thus, TTP in patients with ≥ 95% aPC/BMPCc was 85 months vs not reached cases with <95% aPC/BMPCc (p=0.0000). Other parameters with a significant influence on progression in the univariate analysis were: paraprotein level (higher vs lower of 2 mg/dl; p= 0.0004), the presence of immunoparesis (no paresis vs. decreased levels in one or two Ig. p= 0.0005), Bence-Jones proteinuria (p= 0.0003), PC BM infiltration assessed both by morphology and flow cytometry (p=0.0074; and p= 0.001, respectively), and DNA index assessed by flow cytometry (diploid vs aneuploid; p=0.0064). Moreover, the cut off level of 95% aPC/BMPCc, also allows the discrimination of two risk categories upon considering only patients at low risk of progression, based on a low paraprotein level or absence of inmunoparesis (p= 0.0000 and p= 0.0000, respectively). On multivariate analysis only the percentage of aPC/BMPCc (≥95%) (p=0.000), the DNA index (p=0.007), and the Bence-Jones proteinuria (p=0.000) showed independent prognostic value. In summary, our results show that multiparameter FC evaluation of BMPC at diagnosis is a simple, cost-effective and valuable tool for predicting the risk of progression of MGUS patients.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2804-2804
Author(s):  
AndrÉs Jerez ◽  
Francisco Ortuño ◽  
María del Mar Osma ◽  
Ignacio Español ◽  
Ana Gonzalez ◽  
...  

Abstract Abstract 2804 Poster Board II-780 Background: Monoclonal gammopathy of undetermined significance (MGUS) progresses to plasma cell dyscrasia, mainly multiple myeloma (MM), at a rate of approximately 1% per year. Moreover, recent studies have shown that MM is nearly always preceded by MGUS, encouraging investigators to find better predictors for MM development in order to implement strategies to prevent or delay progression. In addition, a high prevalence of MGUS has been noted in a series of patients with immune disorders or chronic infections. Multiparameter flow cytometry allows the identification and quantification of both monoclonal and polyclonal plasma cells. This study analyses the relationship between monoclonal and polyclonal bone marrow plasma cells (BMPC), studied by means of flow cytometry, and its association with either immune or infectious disorders, or the development of MM in newly diagnosed MGUS patients. Methods: We conducted a retrospective cohort study to analyse the prognostic value of the aberrant (CD38++ CD138+ CD19– CD45weak) to normal (CD38++ CD138+ CD19+ CD45+) phenotype bone marrow plasma cells ratio (A/N ratio) and another 13 variables at baseline for the development of a plasma cell dyscrasia. We also performed a cross-sectional study to evaluate the association of those variables at baseline with the presence of a chronic immune response disorder. In each patient, the following variables were examined: age, sex, hemoglobin, serum creatinine, serum calcium, B2-Microglobulin, type and size of the serum monoclonal component (MC), isotype of the MC immunoglobulin, presence of urine MC, quantification of serum immunoglobulin levels, erythrocyte sedimentation rate, BMPC percentage and presence of atypical plasma cells on light microscopy, and aberrant and normal phenotype BMPC percentages. The effect of variables on progression was calculated using a Cox proportional hazards regression model. To identify variables at baseline associated with immune or chronic infectious disorders. a series of univariate and multivariate analyses was fitted using a binary logistic regression strategy. Results: Between March 1997 and April 2008, flow cytometry analysis on bone-marrow samples was performed on 322 patients with newly diagnosed MGUS. Median patient age was 71 years (interquartile range (IQR) 63-78 years) with a slightly male predominance (51%). Median follow-up was 46 months (IQR 23-58 months). During the period of observation, in 23 (7.1%) patients a transformation was registered into: MM (n=22), and primary amyloidosis (n=1). A total of 24 (7.4%) patients had a diagnosis of autoimmune disorder, and 18 (5.6%) patients of a chronic infection. Multivariate analysis for progression to MM revealed an increased A/N ratio as the main independent prognostic variable. In addition, our study found a significant association between a reduced A/N ratio and the diagnosis of a chronic immune response related condition. Using receiver-operating characteristic analysis we created an A/N ratio range from 4 to 0.20. Values of 4 or higher define a group of MGUS patients at high risk of progression (OR, 10.7; 95% confidence interval 4.2-39), whereas A/N ratio values of 0.20 or lower are associated with immune disorders or chronic infections (OR, 20.9; 95% confidence interval 8.5-51.1). A total of 282 patients had an A/N ratio below 4, and 42 had values equal to or above the cut-off. Patients with an A/N ratio ≥ 4 had a cumulative probability of transformation of 35% at 5 years, compared with 3% for those with an A/N ratio < 4. Conclusions: Extreme values of the A/N ratio at diagnosis seem to be related with two different conditions: high risk MGUS, likely to progress to MM, and immune condition related MGUS. Our findings further support the routine use of phenotypic characterization of bone marrow plasma cells in patients with MGUS at diagnosis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2645-2645
Author(s):  
Jón Þórir Óskarsson ◽  
Iris Petursdottir ◽  
Sæmundur Rögnvaldsson ◽  
Sigrun Thorsteinsdottir ◽  
Gudrun Asta Sigurdardottir ◽  
...  

Abstract Background: A proportion of patient with monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) will progress to active multiple myeloma (MM). Optimization of follow-up strategies and diagnostic testing is needed to detect those who are at risk of imminent progression since they may benefit from early treatment. There is a considerable need for biomarkers that can accurately reflect disease status and risk of progression to MM. In recent years, circulating tumor plasma cells (CTPC) have gained interest in disease monitoring for their promising prognostic significance and the minimally-invasive nature of blood sampling. Aim: To evaluate the feasibility of using CTPC analysis by next-generation flow cytometry (NGF) for disease monitoring in precursor conditions of MM and early detection of progression to active MM. Methods: Participants were enrolled from the Iceland Screens, Treats, or Prevents Multiple Myeloma study (iStopMM). The study is a population-based screening study for MM precursors and randomized trial of follow-up strategies that enrolled 80,579 Icelanders and screened 75,422 of participants by serum protein electrophoresis (SPEP) and free light chain (FLC) assay. A total of 2/3 of participants who had abnormal screening tests were invited to the study clinic to undergo assessment and testing to detect SMM and MM. All cases of SMM and MM and a random conveniency sample of participants with MGUS were eligible for a flow cytometry sub study. The Euroflow NGF MM-MRD method was used for quantitation of tumor PC in the bone marrow (BM) and CTPC in peripheral blood (PB). Paired BM and PB samples were collected at baseline or after SMM/MM diagnosis at the next scheduled BM sampling during follow-up. The Infinicyt software (Cytognos SL, Salamanca, Spain) was used for flow cytometry data analysis. The limit of detection (LOD) was set at ≥ 20 tumor PC in both BM and PB. The Mann-Whitney U test or the Kruskal-Wallis tests were used to assess statistical significance of differences observed between two or more than two groups, respectively. Results: A total of 189 individuals have been included in the study at this point (90 MGUS, 73 SMM, and 26 MM). The frequency of cases in which CTPC were detected in PB increased (p &lt;0.001) from MGUS (17.8%) to SMM (74.0%) and MM (96.2%) at a median LOD of 2.3x10 -6 (Fig. A). Similarly, progressively higher (p &lt;0.01) numbers of CTPC were found from MGUS (median: 0 CTPC/µL), to SMM (0.028 CTPC/µL), and MM (0.16 CTPC/µL) (Fig. B). Analysis of PC in BM by NGF showed that patients with a detectable CTPC population in PB had a significantly (p &lt;0.001) higher percentage of tumor PC within the BMPC compartment compared to patients with undetected CTPC, in both the MGUS and SMM groups (median: 31.5% vs 86.0% and 86.4% vs 94.9%, respectively) (Table). In the SMM group, 96% (27/28) of cases with over 95% tumor PC within the BMPC compartment had a detectable CTPC population in PB (Table). No difference was observed in the frequency of CTPC detection nor the number of CTPC (data not shown) between levels in the MGUS and the 2/20/20 SMM risk stratification models (Table). Conclusion: This is the first study evaluating CTPC in a screened cohort of patients with precursor conditions of MM. We found the frequency of CTPC detection to be lower than has been previously reported in a study by Sanoja-Flores et al. in 2018 using the same NGF method, particularly for MGUS (18% vs 59% [n=150]) and SMM (74% vs 100% [n=26]). This difference can likely be attributed to a higher frequency of patients with less advanced disease in the screened cohort of the iStopMM study, suggested by markedly lower median M-component levels in this study (3.3 vs 6, 7.8 vs 21, and 16.2 vs 27 g/L for MGUS, SMM, and MM, respectively). We found that the number of CTPC progressively increased from MGUS to SMM and MM. Furthermore, a detectable CTPC population by NGF was associated with a higher percentage tumor PC in the BMPC compartment in both MGUS and SMM. A BMPC compartment that is highly dominated by tumor PC (&gt;95%) has been reported to be associated with a higher risk of progression in both MGUS and SMM and in our study a CTPC population was detected in a vast majority of SMM patients with over 95% tumor PC. Taken together, these results confirm that the detection and number of CTPC by NGF is associated with a more advanced disease and that their detection by NGF may have a clinical utility in the follow-up of myeloma precursor disease. Figure 1 Figure 1. Disclosures Durie: Amgen: Other: fees from non-CME/CE services ; Amgen, Celgene/Bristol-Myers Squibb, Janssen, and Takeda: Consultancy. Kristinsson: Amgen: Research Funding; Celgene: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4746-4746 ◽  
Author(s):  
Ola Landgren ◽  
Mark Roschewski ◽  
Sham Mailankody ◽  
Mary Kwok ◽  
Elisabet E. Manasanch ◽  
...  

Abstract BACKGROUND: Early treatment with lenalidomide and dexamethasone delays progression and increases overall survival in patients with high-risk smoldering multiple myeloma. The addition of the selective proteasome inhibitor carfilzomib to a lenalidomide and dexamethasone backbone has proven effective in patients with newly-diagnosed multiple myeloma; this combination may allow patients with high-risk smoldering multiple myeloma to obtain deep and durable responses. METHODS: In this phase 2 pilot study, patients with high-risk smoldering multiple myeloma received eight 28-day cycles of induction therapy with carfilzomib (at a dose of 20/36 mg per square meter on days 1, 2, 8, 9, 15, and 16), lenalidomide (at a dose of 25 mg on days 1–21), and dexamethasone (at a dose of 10 or 20 mg on days 1, 2, 8, 9, 15, 16, 22, and 23). Patients achieving stable disease or better after combination therapy received 2 years of maintenance therapy with lenalidomide. Minimal residual disease was assessed with multi-color flow cytometry, next-generation sequencing by the LymphoSIGHT method, and fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT). Myeloma clonotypes were identified in genomic DNA obtained from CD138+ bone marrow cell lysate or cell-free bone marrow aspirate at baseline for each patient based on their high frequency within the B-cell repertoire. Per study protocol, minimal residual disease assessment by next-generation sequencing, multi-color flow cytometry and FDG-PET/CT was repeated when patients achieved a complete response or completed 8 cycles of induction treatment. A sample size of 12 evaluable patients was calculated as being minimally necessary based on the following probability calculations: If the true probability of a very good partial response was 20% or 50%, we calculated that there would be a 7.3% or 80.6% probability, respectively, if 5 or more patients exhibiting a very good partial response (VGPR). Thus, if 5 or more patients out of 12 achieved a very good partial response, there would be strong evidence that the true probability of a VGPR was 50% or more. RESULTS: Twelve patients were enrolled. All 11 patients (100%) who completed 8 cycles of combination therapy obtained VGPR or better (primary end point). Minimal residual disease assessment by next-generation sequencing was performed on bone marrow supernatant to detect cell-free myeloma clonotypes, while flow cytometry analysis utilized bone marrow cells. Overall (N=12), 100% of patients achieved a complete response or better over the study period, including 11 patients (92%) negative for minimal residual disease based on multi-color flow cytometry. Based on next-generation sequencing, two of the 12 patients were positive for minimal residual disease in the bone marrow supernatant; one of these two patients was also positive for minimal residual disease based on multi-color flow cytometry in the bone marrow cells. Information regarding longitudinal minimal residual disease status will be available and presented at the meeting. Adverse events were manageable. CONCLUSIONS: Early treatment with carfilzomib, lenalidomide, and dexamethasone was associated with high rates of complete response and minimal residual disease negativity by multi-color flow cytometry, next-generation sequencing, and FDG-PET/CT in patients with high-risk smoldering multiple myeloma. Disclosures Landgren: Onyx Pharmaceuticals: Consultancy; Medscape: Consultancy; Millennium Pharmaceuticals: Independent Data Monitoring Committee (IDMC), Independent Data Monitoring Committee (IDMC) Other. Off Label Use: Carfilzomib and lenalidomide for high-risk smoldering multiple myeloma.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1194-1194
Author(s):  
Toshi Ghosh ◽  
Wilson I Gonsalves ◽  
Dragan Jevremovic ◽  
S. Vincent Rajkumar ◽  
Michael M. Timm ◽  
...  

Abstract Background: Prior studies suggest that the presence of >5% polyclonal plasma cells (pPCs) among total plasma cells (PCs) within the bone marrow (BM) is associated with a longer progression-free survival, higher response rates, and lower frequency of high-risk cytogenetic abnormalities in patients with newly diagnosed multiple myeloma (MM). However, the incidence and prognostic utility of this factor in patients with relapsed and/or refractory MM has not been previously evaluated. Thus, we evaluated the prognostic value of quantifying the percentage of pPCs among the total PCs in the BM of patients with actively relapsing MM. Methods: We evaluated all MM patients with actively relapsing disease (biochemical and/or symptomatic) seen at the Mayo Clinic, Rochester, from 2012 to 2013, who had BM samples evaluated by seven-color multiparametric flow cytometry. All patients had at least 24 months of follow-up from the date of flow evaluation. Cell surface antigens were assessed by direct immunofluorescence antibodies for CD45, CD19, CD38, CD138, cytoplasmic Kappa and Lambda Ig light chains, and DAPI nuclear stain. The flow cytometry data was collected using the Becton Dickinson FACSCanto II instruments that analyzed 150,000 events (cells); this data was then analyzed by multi-parameter analysis using the BD FACS DIVA Software. PCs were selectively analyzed through combinatorial gating using light scatter properties and CD38, CD138, CD19, and CD45. Clonal PCs were separated from pPCs based on the differential expression of CD45, CD19, DAPI (in non-diploid cases), and immunoglobulin light chains. The percentage of pPCs was calculated in total PCs detected. Survival analysis was performed by the Kaplan-Meier method and differences were assessed using the log rank test. Results: There were 180 consecutive patients with actively relapsing MM who had BM biopsies analyzed via flow cytometry as part of their routine clinical evaluation. The median age of this group was 65 years (range: 40 - 87); 52% were male. At the time of this analysis, 104 patients had died, and the 2-year overall survival (OS) rate for the cohort was 58%. The median number of therapies received was 4 (range: 1 - 15). Of these patients, 61% received a prior ASCT, and almost all (99%) received prior regimens containing either immunomodulators or proteasome inhibitors. There were 55 (30%) patients with >5% pPCs among the total PCs in their BM. The median percentage of pPCs among total PCs in these 55 patients was 33% (range: 5 - 99). The median OS for those with >5% pPCs was not reached compared with 22 months for those with <5% pPCs (P = 0.028; Figure 1). Patients with <5% pPCs PCs had a higher likelihood of high-risk FISH cytogenetics compared with the rest of the patients. In a univariate analysis, increasing number of pPCs was associated with an improved OS, while higher labeling index, number of prior therapies, and the presence of high-risk FISH cytogenetics were associated with a worse OS. In a multivariate analysis, only the increasing number of pPCs (P = 0.006), higher labeling index (P = 0.0002) and number of prior therapies (P = 0.003) retained statistical significance. Conclusion: Quantitative estimation of the percentage of pPCs among the total PCs in the BM of patients with actively relapsing MM was determined to be a predictor of worse OS. As such, this parameter is able to identify a group of patients with MM with actively relapsing disease who have a particularly poor outcome. Further studies evaluating its biological significance are warranted. Figure 1 Kaplan-Meier curve comparing OS between patients with ≥5% pPCs and <5% pPCs among the total PCs in their BM. Figure 1. Kaplan-Meier curve comparing OS between patients with ≥5% pPCs and <5% pPCs among the total PCs in their BM. Disclosures Kapoor: Celgene: Research Funding; Amgen: Research Funding; Takeda: Research Funding. Gertz:Prothena Therapeutics: Research Funding; Novartis: Research Funding; Alnylam Pharmaceuticals: Research Funding; Research to Practice: Honoraria, Speakers Bureau; Med Learning Group: Honoraria, Speakers Bureau; Celgene: Honoraria; NCI Frederick: Honoraria; Sandoz Inc: Honoraria; GSK: Honoraria; Ionis: Research Funding; Annexon Biosciences: Research Funding. Kumar:AbbVie: Research Funding; Noxxon Pharma: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Array BioPharma: Consultancy, Research Funding; Sanofi: Consultancy, Research Funding; Onyx: Consultancy, Research Funding; Skyline: Honoraria, Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Research Funding; Kesios: Consultancy; Glycomimetics: Consultancy; BMS: Consultancy.


2015 ◽  
Vol 15 ◽  
pp. S238-S239
Author(s):  
Samith Kochuparambil ◽  
William Morice ◽  
S. Vincent Rajkumar ◽  
Angela Dispenzieri ◽  
Michael Timm ◽  
...  

2020 ◽  
Vol 38 (21) ◽  
pp. 2380-2389 ◽  
Author(s):  
Mark Bustoros ◽  
Romanos Sklavenitis-Pistofidis ◽  
Jihye Park ◽  
Robert Redd ◽  
Benny Zhitomirsky ◽  
...  

PURPOSE Smoldering multiple myeloma (SMM) is a precursor condition of multiple myeloma (MM) with a 10% annual risk of progression. Various prognostic models exist for risk stratification; however, those are based on solely clinical metrics. The discovery of genomic alterations that underlie disease progression to MM could improve current risk models. METHODS We used next-generation sequencing to study 214 patients with SMM. We performed whole-exome sequencing on 166 tumors, including 5 with serial samples, and deep targeted sequencing on 48 tumors. RESULTS We observed that most of the genetic alterations necessary for progression have already been acquired by the diagnosis of SMM. Particularly, we found that alterations of the mitogen-activated protein kinase pathway ( KRAS and NRAS single nucleotide variants [SNVs]), the DNA repair pathway (deletion 17p, TP53, and ATM SNVs), and MYC (translocations or copy number variations) were all independent risk factors of progression after accounting for clinical risk staging. We validated these findings in an external SMM cohort by showing that patients who have any of these three features have a higher risk of progressing to MM. Moreover, APOBEC associated mutations were enriched in patients who progressed and were associated with a shorter time to progression in our cohort. CONCLUSION SMM is a genetically mature entity whereby most driver genetic alterations have already occurred, which suggests the existence of a right-skewed model of genetic evolution from monoclonal gammopathy of undetermined significance to MM. We identified and externally validated genomic predictors of progression that could distinguish patients at high risk of progression to MM and, thus, improve on the precision of current clinical models.


Sign in / Sign up

Export Citation Format

Share Document