Development of radiotherapeutic rhenium-188 liposomes in alginate microspheres (Rhe-LAMs) for treatment of liver tumors and technetium-99m liposomes in alginate microspheres (Tech-LAMs) for image-guided treatment planning.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e15599-e15599
Author(s):  
Ryan D. Bitar ◽  
Jorge Lopera ◽  
Ande Bao ◽  
Jaclyn Merlo ◽  
Francisco Cigarroa ◽  
...  

e15599 Background: Radio-embolic agents such as beta-emitting yttrium-90 spheres have been widely adopted as a modality for liver cancer therapy; however, their production can be timely and costly, shunting to the lungs may occur, and post-procedural visualization is limited. Alginate, a polysaccharide which can easily be formed into microspheres, has already been investigated for drug delivery applications; however, we propose utilizing alginate to manufacture radioembolic microspheres for intra-arterial delivery to liver tumors: Rhenium-188/186-labeled liposomes in alginate microspheres (Rhe-LAMS) as a radioembolic agent for the treatment of liver tumors and technetium-99m labeled liposomes in alginate microspheres (Tech-LAMs) as an agent for nuclear image-guided pre-treatment planning for liver cancer patients. Methods: Liposomes were manufactured and labeled with either Re-188/186 or Tc-99m. The liposomes were then mixed with alginate solution and then cross-linked with CaCl2 to form microspheres. Microsphere diameter was evaluated via light microscopy, and retention of radioactivity was measured over time via dosimeter. Microspheres containing free Re-186/Tc-99m (i.e. no liposomes) were also constructed for control comparison. To test in vivo stability, Tech-LAMs were intra-arterially injected into the liver of rabbits for nuclear imaging. Results: 2 ml batches of Rhe-LAMS/Tech-LAMS of 20-80 microns could be manufactured in 3 hours. Radiolabeling efficiency of the liposomes reached 85% and retention of radioactivity in microspheres reached 75%. After overnight incubation, 90% activity was retained. Control microspheres showed a retention of < 5%. In vivo imaging revealed absent activity in the lungs and high embolic activity in the liver. Conclusions: Our novel method demonstrated success regarding radioactivity retention and embolization capabilities. We envision this method to be a quickly-producible, cost-efficient, and effective means for radioembolization of liver tumors that could be adopted by any radiopharmacy.

2020 ◽  
pp. jbc.RA120.015335
Author(s):  
Yuan Deng ◽  
Ming Li ◽  
Minghui Zhuo ◽  
Peng Guo ◽  
Qiang Chen ◽  
...  

Cancer stem-like cells (CSCs) contribute to the high rate of tumor heterogeneity, metastasis, therapeutic resistance, and recurrence. Histone lysine demethylase 4D (KDM4D or JMJD2D) is highly expressed in colon and liver tumors, where it promotes cancer progression; however, the role of JMJD2D in CSCs remains unclear. Here, we show that JMJD2D expression was increased in liver cancer stem-like cells (LCSCs); downregulation of JMJD2D inhibited the self-renewal of LCSCs in vitro and in vivo and inhibited the lung metastasis of LCSCs by reducing the survival and the early lung seeding of circulating LCSCs. Mechanistically, JMJD2D promoted LCSC self-renewal by enhancing the expression of CSC markers EpCAM and Sox9; JMJD2D reduced H3K9me3 levels on the promoters of EpCAM and Sox9 to enhance their transcription via interaction with β-catenin/TCF4 and Notch1 intracellular domain, respectively. Restoration of EpCAM and Sox9 expression in JMJD2D-knockdown liver cancer cells rescued the self-renewal of LCSCs. Pharmacological inhibition of JMJD2D using 5-c-8HQ reduced the self-renewal of LCSCs and liver cancer progression. Collectively, our findings suggest that JMJD2D promotes LCSC self-renewal by enhancing EpCAM and Sox9 expression via Wnt/β-catenin and Notch signaling pathways and is a potential therapeutic target for liver cancer.


2015 ◽  
Vol 15 (10) ◽  
pp. 7971-7975 ◽  
Author(s):  
Hui-Lian Che ◽  
Hwa Jeong Lee ◽  
Koichiro Uto ◽  
Mitsuhiro Ebara ◽  
Won Jong Kim ◽  
...  

In this study, we present anti-cancer drug containing nanofiber-mediated gene delivery to treat liver cancer. Electro-spun nanofibers have big potential for local delivery and sustained release of therapeutic gene and drugs. We reported a temperature-responsive nanofibers mainly compounded by branched poly(ε-caprolactone) (PCL) macro-monomers and anti-cancer drug paclitaxel. The nanofiber could be administrated into liver tumors to dramatically hinder their growth and prevent their metastasis. As a result, paclitaxel encapsulated PCL (PTX/PCL) nanofibers with diameters of around several tens nanometers to 10 nm were successfully obtained by electro-spinning andobserved in scanning electron microscopy (SEM). Nanoparticles composed of disulfide cross-linked branched PEI (ssPEI) and anti-cancer therapeutic gene miRNA-145 were complexed based on the electrostatic interaction and coated over the paclitaxel-loaded nanofiber. MicroRNA 145/ssPEI nanoparticles (MSNs) immobilized on the PTX/PCL nanofiber showed time-dependent sustained release of the microRNA for enhanced uptake in neighboring liver cancer cells without any noticeable cytotoxicity. From this study we are expecting a synergistic effect on the cancer cell suppression since we have combined the drug and gene delivery. This approach uses the nanofibers and nanoparticles together for the treatment of cancer and the detailed investigation in vitro and in vivo must be conducted for the practicality of this study. The polymer is biodegradable and the toxicity issues must be cleared by our approach.


2020 ◽  
Author(s):  
Yong Du ◽  
Angel Cortez ◽  
Mohammadreza Zarisfi ◽  
Anders Josefsson ◽  
Rebecca Krimins ◽  
...  

Abstract Hepatocellular carcinoma is the most common primary liver cancer and the fifth most frequently diagnosed cancer worldwide. Most patients with advanced disease are offered non-surgical palliative treatment options. This work explores the first α-emitting radioembolization for the treatment and monitoring of hepatic tumors. Furthermore, this works demonstrates the first in vivo simultaneous multiple-radionuclide SPECT images of the complex decay chain of an [225Ac]Ac-labeled agent using a clinical SPECT system to monitor the temporal distribution. Methods: A DOTA chelator was modified with a lipophilic moiety and radiolabeled with Actinium-225. The resulting agent, [225Ac]Ac-DOTA-TDA, was emulsified in Lipiodol® and evaluated in vivo in mouse model and the VX2 rabbit technical model of liver cancer. SPECT imaging was performed to monitor distribution of the TAT agent and the free daughters.Results: [225Ac]Ac-DOTA-TDA was shown to retain within the HEP2G tumors and VX2 tumor, with minimal uptake within normal tissue. In the mouse model, significant improvements in overall survival were observed. SPECT imaging was able to distinguish between the Actinium-225 agent (Francium-221) and the loss of the longer lived daughter, Bismuth-213. Conclusion: A TAT agent emulsified in Lipiodol® is capable of targeting liver tumors with minimal accumulation in normal tissue, providing a potential therapeutic agent for the treatment of HCC as well as a variety of hepatic tumors. In addition, SPECT imaging presented here provides a foundation for imaging methodology and protocols that can be rapidly translated into the clinic to monitor Actinium-225-labeled agents.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Wanlu Cao ◽  
Meng Li ◽  
Jiaye Liu ◽  
Shaoshi Zhang ◽  
Lisanne Noordam ◽  
...  

AbstractCancer stem cells (CSCs) or tumor-initiating cells (TICs) are thought to be the main drivers for disease progression and treatment resistance across various cancer types. Identifying and targeting these rare cancer cells, however, remains challenging with respect to therapeutic benefit. Here, we report the enrichment of LGR5 expressing cells, a well-recognized stem cell marker, in mouse liver tumors, and the upregulation of LGR5 expression in human hepatocellular carcinoma. Isolated LGR5 expressing cells from mouse liver tumors are superior in initiating organoids and forming tumors upon engraftment, featuring candidate TICs. These cells are resistant to conventional treatment including sorafenib and 5-FU. Importantly, LGR5 lineage ablation significantly inhibits organoid initiation and tumor growth. The combination of LGR5 ablation with 5-FU, but not sorafenib, further augments the therapeutic efficacy in vivo. Thus, we have identified the LGR5+ compartment as an important TIC population, representing a viable therapeutic target for combating liver cancer.


2020 ◽  
Vol 17 ◽  
Author(s):  
Akhlesh Kumar Jain ◽  
Hitesh Sahu ◽  
Keerti Mishra ◽  
Suresh Thareja

Aim: To design D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for site specific delivery. Background: Liver cancer is the third leading cause of death in world and fifth most often diagnosed cancer is the major global threat to public health. Treatment of liver cancer with conventional method bears several side effects, thus to undertake these side effects as a formulation challenge, it is necessary to develop novel target specific drug delivery system for the effective and better localization of drug into the proximity of target with restricting the movement of drug in normal tissues. Objective: To optimize and characterize the developed D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for effective treatment of liver cancer. Materials and methods: 5-FU loaded JFSSNPs were prepared and optimized formulation had higher encapsulation efficiency were conjugated with D-Mannose. These formulations were characterized for size, morphology, zeta potential, X-Ray Diffraction, and Differential Scanning Calorimetry. Potential of NPs were studied using in vitro cytotoxicity assay, in vivo kinetic studies and bio-distribution studies. Result and discussion: 5-Fluorouracil loaded NPs had particle size between 336 to 802nm with drug entrapment efficiency was between 64.2 to 82.3%. In XRD analysis, 5-FU peak was diminished in the diffractogram, which could be attributed to the successful incorporation of drug in amorphous form. DSC study suggests there was no physical interaction between 5- FU and Polymer. NPs showed sustained in vitro 5-FU release up to 2 hours. In vivo, mannose conjugated NPs prolonged the plasma level of 5-FU and assist selective accumulation of 5-FU in the liver (vs other organs spleen, kidney, lungs and heart) compared to unconjugated one and plain drug. Conclusion: In vivo, bio-distribution and plasma profile studies resulted in significantly higher concentration of 5- Fluorouracil liver suggesting that these carriers are efficient, viable, and targeted carrier of 5-FU treatment of liver cancer.


2018 ◽  
Vol 18 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Mohsen Mohammadgholi ◽  
Nourollah Sadeghzadeh ◽  
Mostafa Erfani ◽  
Saeid Abediankenari ◽  
Seyed Mohammad Abedi ◽  
...  

Background: Human fibronectin extra-domain B (EDB) is particularly expressed during angiogenesis progression. It is, thus, a promising marker of tumour growth. Aptides are a novel class of peptides with high-affinity binding to specific protein targets. APTEDB is an antagonist-like ligand that especially interacts with human fibronectin EDB. Objective: This study was the first attempt in which the hydrazinonicotinamide (HYNIC)-conjugated APTEDB was labelled with technetium-99m (99mTc) as an appropriate radiotracer and tricine/EDDA exchange labeling. Methods: Radiochemical purity, normal saline, and serum stability were evaluated by HPLC and radio-isotope TLC scanner. Other examinations, such as protein-binding calculation, dissociation radioligand binding assay, and partition coefficient constant determination, were also carried out. The cellular-specific binding of 99mTc- HYNIC-conjugated APTEDB was assessed in two EDB-positive (U87MG) and EDB-negative (U373MG) cell lines. Bio-distribution was investigated in normal mice as well as in U87MG and U373MG tumour-bearing mice. Eventually, the radiolabelled APTEDB was used for tumour imaging using planar SPECT. Results: Radiolabelling was achieved with high purity (up to 97%) and accompanied by high solution (over 90% after overnight) and serum (80% after 2 hours) stability. The obtained cellular-specific binding ratio was greater than nine-fold. In-vivo experiments showed rapid blood clearance with mainly renal excretion and tumour uptake specificity (0.48±0.03% ID/g after 1h). The results of the imaging also confirmed considerable tumour uptake for EDB-positive cell line compared with the EDB-negative one. Conclusion: Aptides are considered to be a potent candidate for biopharmaceutical applications. They can be modified with imaging or therapeutic agents. This report shows the capability of 99mTc-HYNIC-APTEDB for human EDB-expressing tumours detection.


RSC Advances ◽  
2019 ◽  
Vol 9 (25) ◽  
pp. 14051-14059
Author(s):  
Abdulrahman Ahmed Mahmood ◽  
Jianqi Zhang ◽  
Rufang Liao ◽  
Xiwei Pan ◽  
Dan Xu ◽  
...  

The acid-responsive pHLIP modified SPION as an MRI contrast agent for liver cancer diagnosis requires the validation of both the tumor-specific enhancement and a safe profile in cirrhosis.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 360
Author(s):  
Pieterjan Debie ◽  
Noemi B. Declerck ◽  
Danny van Willigen ◽  
Celine M. Huygen ◽  
Bieke De Sloovere ◽  
...  

Intraoperative guidance using targeted fluorescent tracers can potentially provide surgeons with real-time feedback on the presence of tumor tissue in resection margins. To overcome the limited depth penetration of fluorescent light, combining fluorescence with SPECT/CT imaging and/or gamma-ray tracing has been proposed. Here, we describe the design and preclinical validation of a novel bimodal nanobody-tracer, labeled using a “multifunctional single attachment point” (MSAP) label, integrating a Cy5 fluorophore and a diethylenetriaminepentaacetic acid (DTPA) chelator into a single structure. After conjugation of the bimodal MSAP to primary amines of the anti-HER2 nanobody 2Rs15d and 111In-labeling of DTPA, the tracer’s characteristics were evaluated in vitro. Subsequently, its biodistribution and tumor targeting were assessed by SPECT/CT and fluorescence imaging over 24 h. Finally, the tracer’s ability to identify small, disseminated tumor lesions was investigated in mice bearing HER2-overexpressing SKOV3.IP1 peritoneal lesions. [111In]In-MSAP.2Rs15d retained its affinity following conjugation and remained stable for 24 h. In vivo SPECT/CT and fluorescence images showed specific uptake in HER2-overexpressing tumors with low background. High tumor-to-muscle ratios were obtained at 1h p.i. and remained 19-fold on SPECT/CT and 3-fold on fluorescence images over 24 h. In the intraperitoneally disseminated model, the tracer allowed detection of larger lesions via nuclear imaging, while fluorescence enabled accurate removal of submillimeter lesions. Bimodal nuclear/fluorescent nanobody-tracers can thus be conveniently designed by conjugation of a single-molecule MSAP-reagent carrying a fluorophore and chelator for radioactive labeling. Such tracers hold promise for clinical applications.


Sign in / Sign up

Export Citation Format

Share Document