Dermatologic adverse events with immune checkpoint blockade: Systematic review and meta-analysis.

2020 ◽  
Vol 38 (5_suppl) ◽  
pp. 84-84
Author(s):  
Kushal Naha ◽  
Lakshmi Manogna Chintalacheruvu ◽  
Donald C. Doll ◽  
Sowjanya Naha

84 Background: Immune checkpoint blockade is known to be associated with various dermatologic adverse events. However, these adverse effects have not been studied in a systematic manner. This is especially relevant considering the rapidly increasing number of immune checkpoint inhibitors that are now available. Methods: We searched for eligible studies in PubMed and Google scholar. We reviewed randomized controlled trials involving cancer patients treated with immune checkpoint inhibitors - PD1 inhibitors, PDL1 inhibitors and CTLA4 inhibitors and for dermatologic adverse effects. A total of 47 randomized controlled trials involving 11875 patients met eligibility criteria for our study. Results: Incidence rate of all grade dermatologic adverse effects was 40.6% (95% confidence interval [CI], 39.4-41.7%). Most common adverse effects included pruritus (17.3%) (95% confidence interval [CI] 16.6-18.1%), undifferentiated rash (15.1%) (95% confidence interval [CI] 14.4-15.9%), vitiligo (3.6%) (95% confidence interval [CI] 3.2-3.9%), maculopapular rash (2.3%) (95% confidence interval [CI] 2.1-2.6%), stomatitis (0.7%) (95% confidence interval [CI] 0.55-0.92%) and dry skin (0.7%) (95% confidence interval [CI] 0.5-0.8%). Less common adverse events include palmoplantar erythrodysesthesia, pemphigoid skin reactions, lichen planus and hyperhidrosis. Grade 3 and higher adverse effects were seen in 1.3% of patients (95% confidence interval [CI] 1.1-1.6%). Conclusions: A wide range of dermatologic adverse effects can be seen with immune checkpoint blockade. While the majority of these events are of grade 1-2, they can occasionally be severe and even life threatening. Patients receiving immune checkpoint blockade should be closely monitored for dermatologic adverse effects.

Author(s):  
Shilpa Grover ◽  
Osama E. Rahma ◽  
Nikroo Hashemi ◽  
Ramona M. Lim

Gastrointestinal toxicities are among the leading causes of immune-related adverse effects of checkpoint blockade. These adverse events can be severe enough to require interruption or withdrawal of immune checkpoint blockade therapy. Patients with immune-related adverse effects require early recognition with an evaluation to rule out alternative etiologies and effective management to minimize complications. This article reviews the gastrointestinal and hepatic toxicities of the antibodies that target immune checkpoints CTLA-4 and PD-1/PD-L1 and provides an approach to their diagnosis and management.


2021 ◽  
Vol 9 (1) ◽  
pp. e001460 ◽  
Author(s):  
Xiuting Liu ◽  
Graham D Hogg ◽  
David G DeNardo

The clinical success of immune checkpoint inhibitors has highlighted the central role of the immune system in cancer control. Immune checkpoint inhibitors can reinvigorate anti-cancer immunity and are now the standard of care in a number of malignancies. However, research on immune checkpoint blockade has largely been framed with the central dogma that checkpoint therapies intrinsically target the T cell, triggering the tumoricidal potential of the adaptive immune system. Although T cells undoubtedly remain a critical piece of the story, mounting evidence, reviewed herein, indicates that much of the efficacy of checkpoint therapies may be attributable to the innate immune system. Emerging research suggests that T cell-directed checkpoint antibodies such as anti-programmed cell death protein-1 (PD-1) or programmed death-ligand-1 (PD-L1) can impact innate immunity by both direct and indirect pathways, which may ultimately shape clinical efficacy. However, the mechanisms and impacts of these activities have yet to be fully elucidated, and checkpoint therapies have potentially beneficial and detrimental effects on innate antitumor immunity. Further research into the role of innate subsets during checkpoint blockade may be critical for developing combination therapies to help overcome checkpoint resistance. The potential of checkpoint therapies to amplify innate antitumor immunity represents a promising new field that can be translated into innovative immunotherapies for patients fighting refractory malignancies.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3629
Author(s):  
Hsiao-Ling Chen ◽  
Yu-Kang Tu ◽  
Hsiu-Mei Chang ◽  
Tai-Huang Lee ◽  
Kuan-Li Wu ◽  
...  

Patients with extensive-stage small cell lung cancer (ED-SCLC) have a very short survival time even if they receive standard cytotoxic chemotherapy with etoposide and platinum (EP). Several randomized controlled trials have shown that patients with ED-SCLC who received a combination of EP plus immune checkpoint inhibitors (ICIs) had superior survival compared with those who received EP alone. We conducted a systematic review and network meta-analysis to provide a ranking of ICIs for our primary endpoints in terms of overall survival (OS), progression free survival (PFS), and objective response rate (ORR), as well as our secondary endpoint in terms of adverse events. The fractional polynomial model was used to evaluate the adjusted hazard ratios for the survival indicators (OS and PFS). Treatment rank was estimated using the surface under the cumulative ranking curve (SUCRA), as well as the probability of being best (Prbest) reference. EP plus nivolumab, atezolizumab or durvalumab had significant benefits compared with EP alone in terms of OS (Hazard Ratio HR = 0.67, 95% Confidence Interval CI = 0.46–0.98 for nivolumab, HR = 0.70, 95% CI = 0.54–0.91 for atezolizumab, HR = 0.73, 95% CI = 0.59–0.90 for durvalumab) but no significant differences were observed for pembrolizumab or ipilimumab. The probability of nivolumab being ranked first among all treatment arms was highest (SCURA = 78.7%, Prbest = 46.7%). All EP plus ICI combinations had a longer PFS compared with EP alone (HR = 0.65, 95% CI = 0.46–0.92 for nivolumab, HR = 0.77, 95% CI = 0.61–0.96 for atezolizumab, HR = 0.78, 95% CI = 0.65–0.94 for durvalumab, HR = 0.75, 95% CI = 0.61–0.92 for pembrolizumab), and nivolumab was ranked first in terms of PFS (SCURA = 85.0%, Prbest = 66.8%). In addition, nivolumab had the highest probability of grade 3–4 adverse events (SUCRA = 84.8%) in our study. We found that nivolumab had the best PFS and OS in all combinations of ICIs and EP, but nivolumab also had the highest probability of grade 3–4 adverse events in our network meta-analysis. Further head-to head large-scale phase III randomized controlled studies are needed to verify our conclusions.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1689 ◽  
Author(s):  
Edoardo Giannini ◽  
Andrea Aglitti ◽  
Mauro Borzio ◽  
Martina Gambato ◽  
Maria Guarino ◽  
...  

Despite progress in our understanding of the biology of hepatocellular carcinoma (HCC), this tumour remains difficult-to-cure for several reasons, starting from the particular disease environment where it arises—advanced chronic liver disease—to its heterogeneous clinical and biological behaviour. The advent, and good results, of immunotherapy for cancer called for the evaluation of its potential application also in HCC, where there is evidence of intra-hepatic immune response activation. Several studies advanced our knowledge of immune checkpoints expression in HCC, thus suggesting that immune checkpoint blockade may have a strong rationale even in the treatment of HCC. According to this background, initial studies with tremelimumab, a cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitor, and nivolumab, a programmed cell death protein 1 (PD-1) antibody, showed promising results, and further studies exploring the effects of other immune checkpoint inhibitors, alone or with other drugs, are currently underway. However, we are still far from the identification of the correct setting, and sequence, where these drugs might be used in clinical practice, and their actual applicability in real-life is unknown. This review focuses on HCC immunobiology and on the potential of immune checkpoint blockade therapy for this tumour, with a critical evaluation of the available trials on immune checkpoint blocking antibodies treatment for HCC. Moreover, it assesses the potential applicability of immune checkpoint inhibitors in the real-life setting, by analysing a large, multicentre cohort of Italian patients with HCC.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14078-e14078
Author(s):  
Qun Zhang ◽  
Lei Cheng ◽  
Jing Hu ◽  
Li Li ◽  
Mi Yang ◽  
...  

e14078 Background: Immune checkpoint inhibitors have brought great breakthroughs in cancer therapy. Activated immune response is known to be the prerequisite for exerting immunotherapy efficacy. Epstein-Barr virus (EBV) infection is associated with longer survival in gastric cancer (GC) patients due to enhanced anti-tumor immune response, and therefore it was reportedly played an important role in modulating immune checkpoint blockade therapy efficacy. However, molecular dimensions underlying the good response to immune checkpoint inhibitors in presence of EBV infection are still unclear. The aim of this study is to identify a gene signature related to EBV induced anti-tumor immune response, and select a tag gene from this signature to predict which patients are most likely to benefit from immune checkpoint blockade therapy. Methods: Two large transcriptome datasets from Gene Expression Omnibus(GEO) database (GSE51575 and GSE62254) were used to screen gene signature for EBV infected gastric cancer tissues. We further selected genes that showed a trend towards differential co-expression independent of EBV infection status. The tag gene of this differential co-expression signature was finally identified by bioinformatics analysis. To make an external validation, we performed RNA sequencing in 20 colorectal caner (CRC) tissues and 20 GC tissues, respectively. Meanwhile, tissue microarrays of CRC cohort (36 paired tumor and normal tissues) and GC cohort (75 paired tumor and normal tissues) were used to analyze the association of SLAMF8 with CD8 protein expression by immunohistochemistry (IHC). Results: Analysis of GEO datasets indicated 788 genes as feature gene cluster for EBV-positive gastric cancer, from which 290 genes were selected to be characterized by differential co-expression in either EBV-positive or EBV-negative gastric cancers. SLAMF8 was identified as the tag gene for this differential co-expression signature. This signature, tagged by SLAMF8, was successfully validated by our RNA sequencing data in presence of its good performance in dividing CRC and GC patients into two subsets. Moreover, we observed a significant association between SLAMF8 and CD8 expression in our CRC and GC tissue samples, in terms of either mRNA or protein level. Conclusions: SLAMF8, a potential indicator for T cell‐mediated immune response induced by EBV infection, may be served as a biomarker for individualized immune checkpoint blockade therapy in gastrointestinal cancer. Further SLAMF8 guided drug sensitivity tests are warranted to validate our results.


2017 ◽  
Vol 35 (6) ◽  
pp. 618-622 ◽  
Author(s):  
Naoshi Nishida ◽  
Masatoshi Kudo

With the development of molecular targeting therapy, several treatment options for advanced hepatocellular carcinoma (HCC) have become available in cases where curative and other palliative treatments, such as radiofrequency ablation, surgical resection, and transarterial chemoembolization, are not applicable. However, with the detection of a variety of mutations in cancer-related genes in a single tumor, molecular heterogeneity is commonly observed in HCC. Therefore, mutations in the major cellular signaling pathways underlie the development of resistance to molecular targeting agents. On the contrary, immune checkpoint inhibitors have proven effective in patients who are refractory to conventional treatments and molecular targeting therapy. Several clinical trials are currently investigating the efficacy of immune checkpoint inhibitors both individually and in combination with other types of anticancer agents. In this review, we focus on the potential of immune checkpoint blockade in the treatment of human HCC.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A683-A683
Author(s):  
Barbara Ma ◽  
Abhinav Jaiswal ◽  
K Sanjana Devi ◽  
Qingrong Huang ◽  
Joy Hsu ◽  
...  

BackgroundImmune checkpoint inhibitors (ICIs) are limited by the high incidence of immune-related adverse events (irAEs) occurring in up to 40% of solid tumor patients on anti-PD-1 monotherapy 1 2 and 72% in anti-CTLA-4/anti-PD-1 combination.3 4 These toxicities can cause treatment cessation, hospitalization and even death.5–7 IrAEs are variable in severity, timing, onset, and remain poorly understood. Amongst the different toxicities, skin irAEs are most frequent, occur the earliest, and are correlated with a positive prognosis.4 8 However, there is a lack of preclinical models to study checkpoint toxicity. We evaluated a murine model of allergic contact dermatitis (contact hypersensitivity to 2,4-dinitrofluorobenzene) that is mediated by CD8+ T cells to gain a mechanistic understanding of skin checkpoint toxicity.MethodsC57BL/6 mice (n = 5 per group) were sensitized epicutaneously on shaved flank with hapten 0.5% DNFB on day -5 and elicited on their ears with DNFB on day 0. Starting four weeks later, mice were treated with either anti-programmed cell death protein (PD-1) or isotype. At the time of the first recall challenge only, mice were given either anti-PD-1 or isotype. Mice received subsequent rechallenges with DNFB to the ears and ear swelling was measured at various time points. Mice were depleted of circulating or skin CD8+ T cells by anti-CD8 mAbs from day 29 onwards, and maintained weekly, as in this model CD8+ T cells are the main hapten responder population. Samples were collected for histochemistry and analyzed by flow cytometry.ResultsOur data indicate that despite the depletion of circulating T cells, anti-PD-1 recipients mount a higher initial recall response to contact agents. Higher ear swelling was observed with increased inflammation in these mice. Our data suggest anti-PD-1 can liberate local T cell responses in the absence of a contribution from blood, and may offer a model to test therapeutic interventions to alleviate peripheral immune toxicities.ConclusionsOur results suggest that this murine model of contact hypersensitivity represents a potential model for skin immune checkpoint toxicities. This model of locally-mediated inflammatory recall may advance the goal of uncoupling toxicity from efficacy in patients with immune-related adverse events.Ethics ApprovalThe animal study was approved by Weill Cornell Medicine’s IACUC; approval number D16-00186.ReferencesNaidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 2015;26(12):2375–91. doi: 10.1093/annonc/mdv383.Belum VR, Benhuri B, Postow MA, et al. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer 2016;60:12–25. doi: 10.1016/j.ejca.2016.02.010.Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med 2018;378(2):158–168. doi: 10.1056/NEJMra1703481.Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol 2019;16(9):563–580. doi: 10.1038/s41571-019-0218-0.Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the society for immunotherapy of cancer (SITC) Toxicity Management Working Group. J Immunother Cancer 2017;5(1):95. doi: 10.1186/s40425-017-0300-z.Wills B, Brahmer JR, Naidoo J. Treatment of complications from immune checkpoint inhibition in patients with lung cancer. Curr Treat Options Oncol 2018;19(9):46. doi: 10.1007/s11864-018-0562-9.Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 2016;54:139–148. doi: 10.1016/j.ejca.2015.11.016.Phillips GS, Wu J, Hellmann MD, et al. Treatment outcomes of immune-related cutaneous adverse events. J Clin Oncol 2019:JCO1802141. doi: 10.1200/JCO.18.02141.


2021 ◽  
Author(s):  
Peng Lv ◽  
Xiaomei Chen ◽  
Shiying Fu ◽  
En Ren ◽  
Chao Liu ◽  
...  

Advances in the development of modern cancer immunotherapy and immune checkpoint inhibitors have dramatically changed the landscape of cancer treatment. However, most cancer patients are refractory to immune checkpoint inhibitors...


Sign in / Sign up

Export Citation Format

Share Document