Safety and efficacy of letetresgene autoleucel (lete-cel; GSK3377794) in advanced myxoid/round cell liposarcoma (MRCLS) following high lymphodepletion (Cohort 2): Interim analysis.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 11521-11521
Author(s):  
Sandra P. D'Angelo ◽  
Mihaela Druta ◽  
Brian Andrew Van Tine ◽  
David A. Liebner ◽  
Scott Schuetze ◽  
...  

11521 Background: Cancer testis antigen NY-ESO-1 is expressed in multiple tumor types, including 80‒90% of MRCLS [1,2]. Overall response rates (ORRs) to MRCLS treatment are low (1L, <20%; 2L, <10%) [2]. Lete-cel, an autologous T-cell therapy, targets NY-ESO-1/LAGE-1a+ tumors using a genetically modified, high-affinity T-cell receptor. High-dose lymphodepletion (LD) was linked with better responses in synovial sarcoma [3]; the current study tested this hypothesis in MRCLS. Methods: This open label, pilot study evaluates lete-cel efficacy and safety in advanced MRCLS following low-dose (Cohort 1 [C1]; 30 mg/m2 fludarabine [flu] x 3d + 600 mg/m2 cyclophosphamide [cy] x 3d) or high-dose (Cohort 2 [C2]; 30 mg/m2 flu x 4d + 900 mg/m2 cy x 3d; initiated based on C1 data) LD. Key eligibility: age ≥18 y; HLA-A*02:01; A*02:05, or A*02:06; advanced high-grade NY-ESO-1+ MRCLS (≥30% of cells 2+/3+ by IHC); prior anthracycline; measurable disease; specified washouts; and active/chronic/intercurrent illness restrictions. Stages include screening, leukapheresis, lete-cel manufacture, LD, lete-cel infusion (1– 8 × 109 transduced T cells), follow-up. Response is assessed at wk 4, 8, 12, and 24, then every 3 mo to disease progression/death/withdrawal. The primary efficacy endpoint is investigator-assessed ORR by RECIST v1.1. In C1 (n=10 patients [pts]), lete-cel was well tolerated and linked with 2 confirmed partial responses (PR; ORR, 20%) and stable disease (SD) in 8 pts. Planned interim analysis for C2, shown here, was done once all 10 treated pts had ≥3 post-baseline disease assessments or progressed/died/withdrew. Efficacy data will be correlated with transduced cell kinetics and pharmacodynamics marker profiles. Results: Durable (1.0–7.8 mo) PR (4/10 pts [ORR, 40%]; 2 ongoing) and prolonged (2.7–10.6 mo) SD (5/10 pts; 3 ongoing) with tumor regression were observed. Treatment-emergent cytopenias occurred in all pts. All experienced T-cell related cytokine release syndrome (5 serious adverse events; 30% Grade 3), with onset ≤5d of infusion and median duration 7.5d. Graft-vs-host disease, immune effector cell–associated neurotoxicity syndrome, pancytopenia, or aplastic anemia were not reported. Conclusions: A single lete-cel infusion after high LD showed antitumor activity in advanced MRCLS and a manageable safety profile consistent with other lete-cel studies. The trial is active but no longer recruiting (NCT02992743). MRCLS is included in a separate, ongoing lete-cel study (NCT03967223). References: 1. D’Angelo SP, et al. J Clin Oncol 2018;36:15_suppl, 3005. 2. Pollack SM, et al. Cancer Med 2020;9(13):4593–602. 3. D’Angelo SP, et al. J Immunother Cancer 2020;8:P298. Funding: GSK (208469; NCT02992743). Editorial support was provided by Eithne Maguire, PhD, of Fishawack Indicia, part of Fishawack Health, and funded by GSK. Clinical trial information: NCT02992743.

2021 ◽  
pp. JCO.20.02224
Author(s):  
Spyridoula Vasileiou ◽  
Premal D. Lulla ◽  
Ifigeneia Tzannou ◽  
Ayumi Watanabe ◽  
Manik Kuvalekar ◽  
...  

PURPOSE Patients with relapsed lymphomas often fail salvage therapies including high-dose chemotherapy and mono-antigen–specific T-cell therapies, highlighting the need for nontoxic, novel treatments. To that end, we clinically tested an autologous T-cell product that targets multiple tumor-associated antigens (TAAs) expressed by lymphomas with the intent of treating disease and preventing immune escape. PATIENTS AND METHODS We expanded polyclonal T cells reactive to five TAAs: PRAME, SSX2, MAGEA4, SURVIVIN, and NY-ESO-1. Products were administered to 32 patients with Hodgkin lymphomas (n = 14) or non-Hodgkin lymphomas (n = 18) in a two-part phase I clinical trial, where the objective of the first phase was to establish the safety of targeting all five TAAs (fixed dose, 0.5 × 107 cells/m2) simultaneously and the second stage was to establish the maximum tolerated dose. Patients had received a median of three prior lines of therapy and either were at high risk for relapse (adjuvant arm, n = 17) or had chemorefractory disease (n = 15) at enrollment. RESULTS Infusions were safe with no dose-limiting toxicities observed in either the antigen- or dose-escalation phases. Although the maximum tolerated dose was not reached, the maximum tested dose at which efficacy was observed (two infusions, 2 × 107 cells/m2) was determined as the recommended phase II dose. Of the patients with chemorefractory lymphomas, two (of seven) with Hodgkin lymphomas and four (of eight) with non-Hodgkin lymphomas achieved durable complete remissions (> 3 years). CONCLUSION T cells targeting five TAAs and administered at doses of up to two infusions of 2 × 107 cells/m2 are well-tolerated by patients with lymphoma both as adjuvant and to treat chemorefractory lymphoma. Preliminary indicators of antilymphoma activity were seen in the chemorefractory cohort across both antigen- and dose-escalation phases.


Author(s):  
Johan Verhagen ◽  
Edith Van der Meijden ◽  
Vanessa Lang ◽  
Andreas Kremer ◽  
Simon Völkl ◽  
...  

Since December 2019, Coronavirus disease-19 (COVID-19) has spread rapidly across the world, leading to a global effort to develop vaccines and treatments. Despite extensive progress, there remains a need for treatments to bolster the immune responses in infected immunocompromised individuals, such as cancer patients who recently underwent a haematopoietic stem cell transplantation. Immunological protection against COVID-19 is mediated by both short-lived neutralising antibodies and long-lasting virus-reactive T cells. Therefore, we propose that T cell therapy may augment efficacy of current treatments. For the greatest efficacy with minimal adverse effects, it is important that any cellular therapy is designed to be as specific and directed as possible. Here, we identify T cells from COVID-19 patients with a potentially protective response to two major antigens of the SARS-CoV-2 virus, Spike and Nucleocapsid protein. By generating clones of highly virus-reactive CD4+ T cells, we were able to confirm a set of 9 immunodominant epitopes and characterise T cell responses against these. Accordingly, the sensitivity of T cell clones for their specific epitope, as well as the extent and focus of their cytokine response was examined. Moreover, by using an advanced T cell receptor (TCR) sequencing approach, we determined the paired TCR sequences of clones of interest. While these data on a limited population require further expansion for universal application, the results presented here form a crucial first step towards TCR-transgenic CD4+ T cell therapy of COVID-19.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 2-3
Author(s):  
Junfang Yang ◽  
Pengfei Jiang ◽  
Xian Zhang ◽  
Jingjing Li ◽  
Yan Wu ◽  
...  

Introduction Multiple issues arise for a wider application of chimeric antigen receptor (CAR) T cell therapy including manufacturing time and antigen escape. Here we report data on an anti-CD19/CD22 dual CAR-T (GC022F) therapy based on a novel manufacturing platform, from a phase I clinical study (NCT04129099) in treating patients with B-cell acute lymphoblastic leukemia (B-ALL). Methods Peripheral blood (PB) mononuclear cells were obtained by leukapheresis. T-cells were separated and transduced with lentivirus that encodes a CD19/CD22 directed 4-1BB: ζ CAR. GC022F cells were manufactured using a novel FasTCARTM platform which takes 24 hours, while the conventional CD19/CD22 dual CAR-T (GC022C) cells used as parallel control in the preclinical study were manufactured by conventional process which typically takes 9-14 days. The phase I dose escalation study was initiated to explore the safety and efficacy of GC022F in patients with B-ALL. All patients received a conditioning regimen of IV fludarabine (25mg/m2/d) and cyclophosphamide (250mg/m2/d) for 3 days prior to GC022F infusion. Results When compared with the GC022C, GC022F cells showed 1) less exhaustion as indicated by lower percentage of PD-1+LAG3+ cells following co-culturing with tumor cells, 2) younger phenotypes as demonstrated by more abundant T central memory cells (Tcm; CCR7+CD45RA+ or CD45RO+CD62L+), 3) higher expansion fold at in vitro culture, and 4) high anti-leukemia efficacy in mice model (Fig.1). Comparing in vivo efficacy of GC022F with GC022C cells at lower doses, GC022F treatment were more potent and could reduce tumor burden earlier and faster, and led to significantly prolonged overall survival of the experimental animals. From Nov. 2019 to Jun. 2020, 9 children and 1 adult with B-ALL were enrolled and infused with GC022F, 2 in low-dose (6.0×104/kg), 7 in medium dose (1.0-1.5×105/kg), 1 in high-dose (2.25×105/kg). Patients' median observation time was 99 (14-210) days on the day of cut-off. Characteristics of enrolled patients are shown in Table 1. The median age was 10 (3-48) years, and the median bone marrow (BM) blasts were 21.0 (0.1-63.5) % at enrollment. Three patients had prior CD19 CAR-T cell therapy history and one of whom had prior allogeneic hematopoietic stem cell transplantation (allo-HSCT). After infusion, the median peak of circulating CAR-T cell copy number was 2.29 ×105 copies/µg genomic DNA (0.0014-5.66), which occurred around day 14 (day10 - day 28). Importantly, GC022F persisted well in PB with a median of 2.40×105 copies/µg genomic DNA (0.75-3.98) on day 28 in 5 of 9 patients with available 4 weeks of cellular kinetics data. GC022F exerted a superior safety profile with no observed grade ≥ 3 cytokine release syndrome (CRS) and neurotoxicity in all patients. Among those 6 patients with CRS, only 1 at high dose level had grade 2 CRS; only 1 developed grade 1 neurotoxicity. After GC022F infusion, 6/6 patients with BM blasts &gt; 5% at enrollment achieved complete remission (CR) by day 28, 5/6 with minimal residual disease (MRD)-negative CR. For those 4 patients with MRD positive disease at enrollment, 3 became MRD-negative CR by day 28, 1 had persist MRD positive disease and withdrew from the study by 2 weeks. Five of 8 MRD-negative CR patients subsequently made a choice to pursue consolidation allo-HSCT with a median time interval of 57 (48-71) days post GC022F infusion and all have remained in MRD-negative CR except 1 died from graft-versus-host disease (GVHD) and infection 143 days post GC022F infusion. Of the other 3 patients without allo-HSCT, 2 relapsed with CD19+/CD22+ disease at 12-16 weeks follow-up, including the patient with prior history of CD19 CAR-T treatment and transplant. Conclusion This study demonstrated that anti-CD19/CD22 dual CAR T-cells could be successfully manufactured by FasTCARTM technology in 24 hours, with younger and less exhausted phenotypes. Moreover, the Dual FasTCAR-T cells showed more potent efficacy in xenograft mouse model compared to the conventional dual CAR-T cells. Our clinical data demonstrate that GC022F is safe and efficacious in treating patients with CD19+CD22+ B-ALL. More data on additional patients and longer observation time are needed to further evaluate CD19/CD22 dual FasTCAR-T cell product. Disclosures Cai: Gracell Biotechnologies Ltd: Current Employment. Wang:Gracell Biotechnologies Ltd: Current Employment. Chen:Gracell Biotechnologies Ltd: Current Employment. Ye:Gracell Biotechnologies Co., Ltd.: Current Employment. He:Gracell Biotechnologies Co., Ltd.: Current Employment. Cao:Gracell Biotechnologies Ltd: Current Employment. Sersch:Gracell Biotechnologies Co., Ltd.: Current Employment.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 696 ◽  
Author(s):  
Bianca Simon ◽  
Dennis C. Harrer ◽  
Beatrice Schuler-Thurner ◽  
Gerold Schuler ◽  
Ugur Uslu

Tumor cells can develop immune escape mechanisms to bypass T cell recognition, e.g., antigen loss or downregulation of the antigen presenting machinery, which represents a major challenge in adoptive T cell therapy. To counteract these mechanisms, we transferred not only one, but two receptors into the same T cell to generate T cells expressing two additional receptors (TETARs). We generated these TETARs by lentiviral transduction of a gp100-specific T cell receptor (TCR) and subsequent electroporation of mRNA encoding a second-generation CSPG4-specific chimeric antigen receptor (CAR). Following pilot experiments to optimize the combined DNA- and RNA-based receptor transfer, the functionality of TETARs was compared to T cells either transfected with the TCR only or the CAR only. After transfection, TETARs clearly expressed both introduced receptors on their cell surface. When stimulated with tumor cells expressing either one of the antigens or both, TETARs were able to secrete cytokines and showed cytotoxicity. The confirmation that two antigen-specific receptors can be functionally combined using two different methods to introduce each receptor into the same T cell opens new possibilities and opportunities in cancer immunotherapy. For further evaluation, the use of these TETARs in appropriate animal models will be the next step towards a potential clinical use in cancer patients.


2019 ◽  
Vol 49 (5) ◽  
pp. 377-385 ◽  
Author(s):  
Monique E. Cho ◽  
Mary H. Branton ◽  
David A. Smith ◽  
Linda Bartlett ◽  
Lilian Howard ◽  
...  

Background: In adults with primary focal segmental glomerulosclerosis (FSGS), daily prednisone may induce complete remissions (CR) and partial remissions (PR), but relapses are frequent and adverse events are common. Methods: We carried out 2 open-label, uncontrolled trials to explore the efficacy and tolerability of pulse oral dexamethasone as an alternative to daily prednisone. We enrolled adult patients with proteinuria > 3.5 g/day despite the use of renin-angiotensin-aldosterone blockade. In the first trial, we enrolled 14 subjects with FSGS and administered 4 dexamethasone doses (25 mg/m2) daily for 4 days, repeated every 28 days over 32 weeks. The second trial involved a more intensive regimen. Eight subjects received 4 dexamethasone doses of 50 mg/m2 every 4 weeks for 12 weeks, followed by 4 doses of 25 mg/m2 every 4 weeks for 36 weeks; subjects were randomized to 2 doses every 2 weeks or 4 doses every 4 weeks. Results: In the first trial, we enrolled 13 subjects with FSGS and 1 with minimal change disease and found a combined CR and PR rate of 36%. In the second trial, we enrolled 8 subjects. The combined CR and PR rate was 29%. Analysis combining both trials showed a combined CR and PR rate of 33%. Adverse events were observed in 32% of subjects, with mood symptoms being most common. There were no serious adverse events related to the study. Conclusion: We conclude that high dose oral dexamethasone is well tolerated by adults with idiopathic nephrotic syndrome and may have some efficacy.


2020 ◽  
Vol 8 (1) ◽  
pp. e000247
Author(s):  
Brett A Schroeder ◽  
Ralph Graeme Black ◽  
Sydney Spadinger ◽  
Shihong Zhang ◽  
Karan Kohli ◽  
...  

BackgroundAdoptive cellular therapy (ACT) is a promising treatment for synovial sarcoma (SS) with reported response rates of over 50%. However, more work is needed to obtain deeper and more durable responses. SS has a ‘cold’ tumor immune microenvironment with low levels of major histocompatibility complex (MHC) expression and few T-cell infiltrates, which could represent a barrier toward successful treatment with ACT. We previously demonstrated that both MHC expression and T-cell infiltration can be increased using systemic interferon gamma (IFN-γ), which could improve the efficacy of ACT for SS.Case presentationWe launched a phase I trial incorporating four weekly doses of IFN-γ in an ACT regimen of high-dose cyclophosphamide (HD Cy), NY-ESO-1-specific T cells, and postinfusion low-dose interleukin (IL)-2. Two patients were treated. While one patient had significant tumor regression and resultant clinical benefit, the other patient suffered a fatal histiocytic myocarditis. Therefore, this cohort was terminated for safety concerns.ConclusionWe describe a new and serious toxicity of immunotherapy from IFN-γ combined with HD Cy-based lymphodepletion and low-dose IL-2. While IFN-γ should not be used concurrently with HD Cy or with low dose IL-2, IFN-γ may still be important in sensitizing SS for ACT. Future studies should avoid using IFN-γ during the immediate period before/after cell infusion.Trial registration numbersNCT04177021,NCT01957709, andNCT03063632.


2020 ◽  
Vol 4 (s1) ◽  
pp. 16-16
Author(s):  
Jason Devlin ◽  
Jesus Alonso ◽  
Grant Keller ◽  
Sara Bobisse ◽  
Alexandre Harari ◽  
...  

OBJECTIVES/GOALS: Neoantigen vaccine immunotherapies have shown promise in clinical trials, but identifying which peptides to include in a vaccine remains a challenge. We aim to establish that molecular structural features can help predict which neoantigens to target to achieve tumor regression. METHODS/STUDY POPULATION: Proteins were prepared by recombinant expression in E. coli followed by in vitro refolding. Correctly folded proteins were purified by chromatography. Affinities of protein-protein interactions were measured by surface plasmon resonance (SPR) and thermal stabilities of proteins were determined by differential scanning fluorimetry. All experiments were performed at least in triplicate. Protein crystals were obtained by hanging drop vapor diffusion. The protein crystal structures were solved by molecular replacement and underwent several rounds of automated refinement. Molecular dynamics simulations were performed using the AMBER molecular dynamics package. RESULTS/ANTICIPATED RESULTS: A T cell receptor (TCR) expressed by tumor-infiltrating T cells exhibited a 20-fold stronger binding affinity to the neoantigen peptide compared to the self-peptide. X-ray crystal structures of the peptides with the major histocompatibility complex (MHC) protein demonstrated that a non-mutated residue in the peptide samples different positions with the mutation. The difference in conformations of the non-mutated residue was supported by molecular dynamics simulations. Crystal structures of the TCR engaging both peptide/MHCs suggested that the conformation favored by the mutant peptide was crucial for TCR binding. The TCR bound the neoantigen/MHC with faster binding kinetics. DISCUSSION/SIGNIFICANCE OF IMPACT: Our results suggest that the mutation impacts the conformation of another residue in the peptide, and this alteration allows for more favorable T cell receptor binding to the neoantigen. This highlights the potential of non-mutated residues in contributing to neoantigen recognition.


2018 ◽  
Vol 6 (5) ◽  
pp. 594-604 ◽  
Author(s):  
Takemasa Tsuji ◽  
Akira Yoneda ◽  
Junko Matsuzaki ◽  
Anthony Miliotto ◽  
Courtney Ryan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document