Using breath analysis as a screening tool to detect gastric cancer: A systematic review.

2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 175-175
Author(s):  
Ghazal Haddad ◽  
Stef Schouwenburg ◽  
Ashraf Altesha ◽  
Wei Xu ◽  
Geoffrey Liu

175 Background: In its early stages, gastric cancer symptoms are frequently lacking, resulting in an often late and incurable diagnosis. A non-invasive, cheap, and reliable screening method for gastric cancer could improve outcomes and increase the number of surgically resectable gastric cancers. Breath analysis has emerged as an experimental method of non-invasive screening of gastric cancer and identification of individuals suitable for confirmatory, diagnostic upper gastrointestinal endoscopy. We aimed to evaluate the accuracy and applicability of breath analysis for gastric cancer detection in adults. Methods: This systematic review searched MEDLINE, EMBASE, BIOSIS, CENTRAL, and Compendex until 11 July 2019 for original studies analyzing exhaled breath to detect gastric cancer in patients. Two authors then independently screened the abstracts, titles, and full texts. Summary sensitivity and specificity analyses were obtained using a hierarchical bivariate method. Positive predictive value and number needed to screen (NNS) of breath analysis methods for gastric cancer detection were calculated for each country using gastric cancer prevalence by country obtained from the Global Cancer Observatory. Non-quantitative results were descriptively summarized. Risk of bias was assessed using the QUADAS-2 tool. This study protocol was pre-registered in PROSPERO (CRD42020139422). Results: Twenty studies were included. Together, the studies included 2,976 subjects. The pooled mean age of the subjects in the gastric cancer groups was 60.5 ± 11 years while the pooled mean age for control groups was 55.4 ± 12 years. Within these twenty studies, breath analysis technologies most commonly used were mass spectrometry (MS)-based methods; other methods included volatile organic compound sensors, thermal desorption tubes, and silicon nanowire field effect transistors. Across all included studies, we found and summarized the characteristics of 131 chemical compounds found in the exhaled breath of study subjects. Eleven studies (total n = 1905) involving all technologies reported quantitative results, with sensitivities ranging from 67-100% and specificities from 71-98%. The summary sensitivity across six studies utilizing MS-based breath analysis methods was 85.3% (95% CI: 82-96%); summary specificity was 81.7%. (95% CI: 78-85%). Based on the MS-based values, we estimated that screening with MS-based breath tests could lower the NNS by more than four-fold in the 15 countries with the highest prevalence of gastric cancer. Conclusions: Breath analysis is a promising method for gastric cancer detection with good diagnostic performance and potential to decrease the NNS for endoscopy-based gastric cancer detection. However, due to the heterogeneity of breath analysis technologies, rigorous studies with standardized, reproducible methods are needed to evaluate the clinical applicability of these technologies.

Biosensors ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 55 ◽  
Author(s):  
Tiele ◽  
Wicaksono ◽  
Kansara ◽  
Arasaradnam ◽  
Covington

Early diagnosis of inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), remains a clinical challenge with current tests being invasive and costly. The analysis of volatile organic compounds (VOCs) in exhaled breath and biomarkers in stool (faecal calprotectin (FCP)) show increasing potential as non-invasive diagnostic tools. The aim of this pilot study is to evaluate the efficacy of breath analysis and determine if FCP can be used as an additional non-invasive parameter to supplement breath results, for the diagnosis of IBD. Thirty-nine subjects were recruited (14 CD, 16 UC, 9 controls). Breath samples were analysed using an in-house built electronic nose (Wolf eNose) and commercial gas chromatograph–ion mobility spectrometer (G.A.S. BreathSpec GC-IMS). Both technologies could consistently separate IBD and controls [AUC ± 95%, sensitivity, specificity], eNose: [0.81, 0.67, 0.89]; GC-IMS: [0.93, 0.87, 0.89]. Furthermore, we could separate CD from UC, eNose: [0.88, 0.71, 0.88]; GC-IMS: [0.71, 0.86, 0.62]. Including FCP did not improve distinction between CD vs UC; eNose: [0.74, 1.00, 0.56], but rather, improved separation of CD vs controls and UC vs controls; eNose: [0.77, 0.55, 1.00] and [0.72, 0.89, 0.67] without FCP, [0.81, 0.73, 0.78] and [0.90, 1.00, 0.78] with FCP, respectively. These results confirm the utility of breath analysis to distinguish between IBD-related diagnostic groups. FCP does not add significant diagnostic value to breath analysis within this study.


Author(s):  
Mustafa Abumeeiz ◽  
Lauren Elliott ◽  
Phillip Olla

Abstract Due to the COVID-19 pandemic, there is currently a need for accurate, rapid, and easy-to-administer diagnostic tools to help communities manage local outbreaks and assess the spread of disease. The use of Artificial Intelligence within the domain of breath analysis techniques has shown to have potential in diagnosing a variety of diseases such as cancer and lung disease by analyzing volatile organic compounds (VOCs) in exhaled breath. This combined with their rapid, easy-to-use, and non-invasive nature makes them a good candidate for use in diagnosing COVID-19 in large scale public health operations. However, there remains issues with their implementation when it comes to the infrastructure currently available to support their use on a broad scale. This includes issues of standardization, and whether or not a characteristic VOC pattern can be identified for COVID-19. Despite these difficulties, breathalysers offer potential to assist in pandemic responses and their use should be investigated.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 476
Author(s):  
Kaushiki Dixit ◽  
Somayeh Fardindoost ◽  
Adithya Ravishankara ◽  
Nishat Tasnim ◽  
Mina Hoorfar

With the global population prevalence of diabetes surpassing 463 million cases in 2019 and diabetes leading to millions of deaths each year, there is a critical need for feasible, rapid, and non-invasive methodologies for continuous blood glucose monitoring in contrast to the current procedures that are either invasive, complicated, or expensive. Breath analysis is a viable methodology for non-invasive diabetes management owing to its potential for multiple disease diagnoses, the nominal requirement of sample processing, and immense sample accessibility; however, the development of functional commercial sensors is challenging due to the low concentration of volatile organic compounds (VOCs) present in exhaled breath and the confounding factors influencing the exhaled breath profile. Given the complexity of the topic and the skyrocketing spread of diabetes, a multifarious review of exhaled breath analysis for diabetes monitoring is essential to track the technological progress in the field and comprehend the obstacles in developing a breath analysis-based diabetes management system. In this review, we consolidate the relevance of exhaled breath analysis through a critical assessment of current technologies and recent advancements in sensing methods to address the shortcomings associated with blood glucose monitoring. We provide a detailed assessment of the intricacies involved in the development of non-invasive diabetes monitoring devices. In addition, we spotlight the need to consider breath biomarker clusters as opposed to standalone biomarkers for the clinical applicability of exhaled breath monitoring. We present potential VOC clusters suitable for diabetes management and highlight the recent buildout of breath sensing methodologies, focusing on novel sensing materials and transduction mechanisms. Finally, we portray a multifaceted comparison of exhaled breath analysis for diabetes monitoring and highlight remaining challenges on the path to realizing breath analysis as a non-invasive healthcare approach.


2021 ◽  
Author(s):  
Rianne de Vries ◽  
René M. Vigeveno ◽  
Simone Mulder ◽  
Niloufar Farzan ◽  
Demi R. Vintges ◽  
...  

AbstractBackgroundRapid and accurate detection of SARS-CoV-2 infected individuals is crucial for taking timely measures and minimizing the risk of further SARS-CoV-2 spread. We aimed to assess the accuracy of exhaled breath analysis by electronic nose (eNose) for the discrimination between individuals with and without a SARS-CoV-2 infection.MethodsThis was a prospective real-world study of individuals presenting to public test facility for SARS-CoV-2 detection by molecular amplification tests (TMA or RT-PCR). After sampling of a combined throat/nasopharyngeal swab, breath profiles were obtained using a cloud-connected eNose. Data-analysis involved advanced signal processing and statistics based on independent t-tests followed by linear discriminant and ROC analysis. Data from the training set were tested in a validation, a replication and an asymptomatic set.FindingsFor the analysis 4510 individuals were available. In the training set (35 individuals with; 869 without SARS-CoV-2), the eNose sensors were combined into a composite biomarker with a ROC-AUC of 0.947 (CI:0.928-0.967). These results were confirmed in the validation set (0.957; CI:0.942-0.971, n=904) and externally validated in the replication set (0.937; CI:0.926-0.947, n=1948) and the asymptomatic set (0.909; CI:0.879-0.938, n=754). Selecting a cut-off value of 0.30 in the training set resulted in a sensitivity/specificity of 100/78, >99/84, 98/82% in the validation, replication and asymptomatic set, respectively.InterpretationeNose represents a quick and non-invasive method to reliably rule out SARS-CoV-2 infection in public health test facilities and can be used as a screening test to define who needs an additional confirmation test.FundingMinistry of Health, Welfare and SportResearch in contextEvidence before this studyElectronic nose technology is an emerging diagnostic tool for diagnosis and phenotyping of a wide variety of diseases, including inflammatory respiratory diseases, lung cancer, and infections.As of Feb 13, 2021, our search of PubMed using keywords “COVID-19” OR “SARS-CoV-2” AND “eNose” OR “electronic nose” OR “exhaled breath analysis” yielded 4 articles (1-4) that have assessed test characteristics of electronic nose to diagnose COVID-19. In these small studies the obtained signals using sensor-based technologies, two-dimensional gas chromatography and time-of-flight mass spectrometry, or proton transfer reaction time-of-flight mass spectrometry, provided adequate discrimination between patients with and without COVID-19.Added value of this studyWe prospectively studied the accuracy of exhaled breath analysis by electronic nose (eNose) to diagnose or rule out a SARS-CoV-2 infection in individuals with and without symptoms presenting to a public test facility. In the training set with 904 individuals, the eNose sensors were combined into a composite biomarker with a ROC-AUC of 0.948. In three independent validation cohorts of 3606 individuals in total, eNose was able to reliably rule out SARS-CoV-2 infection in 70-75% of individuals, with a sensitivity ranging between 98-100%, and a specificity between 78-84%. No association was found between cycle thresholds values, as semi-quantitative measure of viral load, and eNose variables.Implications of all the available evidenceThe available findings, including those from our study, support the use of eNose technology to distinguish between individuals with and without a SARS-CoV-2 infection with high accuracy. Exhaled breath analysis by eNose represents a quick and non-invasive method to reliably rule out a SARS-CoV-2 infection in public health test facilities. The results can be made available within seconds and can therefore be used as screening instrument. The eNose can reliably rule out a SARS-CoV-2 infection, eliminating the need for additional time-consuming, stressful, and expensive diagnostic tests in the majority of individuals.


2018 ◽  
Vol 12 (2) ◽  
pp. 024001 ◽  
Author(s):  
Pouline M van Oort ◽  
Pedro Povoa ◽  
Ronny Schnabel ◽  
Paul Dark ◽  
Antonio Artigas ◽  
...  

2020 ◽  
pp. e4588
Author(s):  
Yi Hong ◽  
Xinxin Che ◽  
Haibo Su ◽  
Zebin Mai ◽  
Zhengxu Huang ◽  
...  

2017 ◽  
Vol 9 (15) ◽  
pp. 2342-2350 ◽  
Author(s):  
Samin Hamidi ◽  
Maryam Khoubnasabjafari ◽  
Khalil Ansarin ◽  
Vahid Jouyban-Gharamaleki ◽  
Abolghasem Jouyban

Breath analysis is a potential and non-invasive tool for monitoring drugs levels and the status of respiratory or systemic disorders and attracted more attentions in recent years.


Sign in / Sign up

Export Citation Format

Share Document