scholarly journals Detection of Circulating Tumor DNA in Patients With Leiomyosarcoma With Progressive Disease

2019 ◽  
pp. 1-11 ◽  
Author(s):  
Matthew L. Hemming ◽  
Kelly Klega ◽  
Justin Rhoades ◽  
Gavin Ha ◽  
Kate E. Acker ◽  
...  

Purpose Leiomyosarcoma (LMS) is a soft-tissue sarcoma characterized by multiple copy number alterations (CNAs) and without common recurrent single-nucleotide variants. We evaluated the feasibility of detecting circulating tumor DNA (ctDNA) with next-generation sequencing in a cohort of patients with LMS whose tumor burden ranged from no evidence of disease to metastatic progressive disease. Patients and Methods We evaluated cell-free DNA in plasma samples and paired genomic DNA from resected tumors from patients with LMS by ultra-low passage whole-genome sequencing. Sequencing reads were aligned to the human genome and CNAs that were identified in cell-free DNA and tumor DNA by ichorCNA software to determine the presence of ctDNA. Clinical data were reviewed to assess disease burden and clinicopathologic features. Results We identified LMS ctDNA in 11 (69%) of 16 patients with disease progression and total tumor burden greater than 5 cm. Sixteen patients with stable disease or low disease burden at the time of blood draw were found to have no detectable ctDNA. Higher ctDNA fraction of total cell-free DNA was associated with increasing tumor size and disease progression. Conserved CNAs were found between primary tumors and ctDNA in each case, and recurrent CNAs were found across LMS samples. ctDNA levels declined after resection of progressive disease in one case and became detectable upon disease relapse in another individual patient. Conclusion These results suggest that ctDNA, assayed by a widely available sequencing approach, may be useful as a biomarker for a subset of patients with uterine and extrauterine LMS. Higher levels of ctDNA correlate with tumor size and disease progression. Liquid biopsies may assist in guiding treatment decisions, monitoring response to systemic therapy, surveying for disease recurrence, and differentiating benign and malignant smooth muscle tumors.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guanhua Zhu ◽  
Yu A. Guo ◽  
Danliang Ho ◽  
Polly Poon ◽  
Zhong Wee Poh ◽  
...  

AbstractProfiling of circulating tumor DNA (ctDNA) may offer a non-invasive approach to monitor disease progression. Here, we develop a quantitative method, exploiting local tissue-specific cell-free DNA (cfDNA) degradation patterns, that accurately estimates ctDNA burden independent of genomic aberrations. Nucleosome-dependent cfDNA degradation at promoters and first exon-intron junctions is strongly associated with differential transcriptional activity in tumors and blood. A quantitative model, based on just 6 regulatory regions, could accurately predict ctDNA levels in colorectal cancer patients. Strikingly, a model restricted to blood-specific regulatory regions could predict ctDNA levels across both colorectal and breast cancer patients. Using compact targeted sequencing (<25 kb) of predictive regions, we demonstrate how the approach could enable quantitative low-cost tracking of ctDNA dynamics and disease progression.


2014 ◽  
Vol 32 (3_suppl) ◽  
pp. 490-490 ◽  
Author(s):  
David Sefrioui ◽  
Nasrin Vasseur ◽  
Richard Sesboüé ◽  
France Blanchard ◽  
Alice Oden-Gangloff ◽  
...  

490 Background: It has been suggested that detection of circulating tumor DNA may be relevant in patients with metastatic colorectal cancer (mCRC). The main objective of the present study was to evaluate a method based on the TaqMan Mutation Detection Assay (TMDA) for the detection of circulating KRAS mutations in mCRC patients. Moreover, we also investigated the prognostic impact of the plasma cell-free DNA and the fraction of circulating KRAS mutations. Methods: The study was conducted from April to July 2013 and plasma samples were prospectively collected in a series of 35 mCRC patients treated with chemotherapy (CT). QIAamp Circulating Nucleic Acid kit was used for DNA extraction and Quant-iT High Sensitivity dsDNA Assay for cf-DNA quantification. Detection of circulating tumor DNA was based on the KRAS mutations detected in tumour and was performed in plasma by the castPCR Technology TMDA. Response to CT was assessed according to RECIST criteria. The results of plasma cf-DNA and level of mutant DNA fragments were correlated with response and 3-months survival. Results: We isolated and quantified plasma cf-DNA in all patients with a mean concentration of 106 ng/mL. Among them, 18 were wild-type and 17 mutated for KRAS in the tumour. Detection of circulating KRAS mutations was performed with TMDA in 23 patients (10 KRAS wild-type and 13 KRAS mutated). The sensitivity was 62% (8/13) and specificity 100% (0/10) with a level of circulating mutant DNA fragments ranging from 0 to 29%. Plasma cf-DNA and level of circulating mutant DNA were both significantly correlated with the 3-months survival (mean 36 versus 524 ng/mL, p=0.0015 and 2% versus 29%, p<0.0001). There was a non significant trend for response to CT (respectively p=0.14 and p=0.12). Conclusions: TMDA method is a simple, accurate and non-invasive tool for the detection of circulating tumor DNA. Our preliminary results also suggest that plasma cf-DNA and fraction of mutant DNA fragments could be prognostic markers in mCRC patients.


2019 ◽  
Vol Volume 12 ◽  
pp. 11517-11530 ◽  
Author(s):  
Qian Chen ◽  
Zi-Han Zhang ◽  
Shu Wang ◽  
Jing-He Lang

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256436
Author(s):  
Joerg Bredno ◽  
Jafi Lipson ◽  
Oliver Venn ◽  
Alexander M. Aravanis ◽  
Arash Jamshidi

Background Oncology applications of cell-free DNA analysis are often limited by the amount of circulating tumor DNA and the fraction of cell-free DNA derived from tumor cells in a blood sample. This circulating tumor fraction varies widely between individuals and cancer types. Clinical factors that influence tumor fraction have not been completely elucidated. Methods and findings Circulating tumor fraction was determined for breast, lung, and colorectal cancer participant samples in the first substudy of the Circulating Cell-free Genome Atlas study (CCGA; NCT02889978; multi-cancer early detection test development) and was related to tumor and patient characteristics. Linear models were created to determine the influence of tumor size combined with mitotic or metabolic activity (as tumor mitotic volume or excessive lesion glycolysis, respectively), histologic type, histologic grade, and lymph node status on tumor fraction. For breast and lung cancer, tumor mitotic volume and excessive lesion glycolysis (primary lesion volume scaled by percentage positive for Ki-67 or PET standardized uptake value minus 1.0, respectively) were the only statistically significant covariates. For colorectal cancer, the surface area of tumors invading beyond the subserosa was the only significant covariate. The models were validated with cases from the second CCGA substudy and show that these clinical correlates of circulating tumor fraction can predict and explain the performance of a multi-cancer early detection test. Conclusions Prognostic clinical variables, including mitotic or metabolic activity and depth of invasion, were identified as correlates of circulating tumor DNA by linear models that relate clinical covariates to tumor fraction. The identified correlates indicate that faster growing tumors have higher tumor fractions. Early cancer detection from assays that analyze cell-free DNA is determined by circulating tumor fraction. Results support that early detection is particularly sensitive for faster growing, aggressive tumors with high mortality, many of which have no available screening today.


2021 ◽  
Vol 9 (10) ◽  
pp. e003476
Author(s):  
Marc Oliva ◽  
Douglas Chepeha ◽  
Daniel V Araujo ◽  
J. Javier Diaz-Mejia ◽  
Peter Olson ◽  
...  

BackgroundSitravatinib, a tyrosine kinase inhibitor that targets TYRO3, AXL, MERTK and the VEGF receptor family, is predicted to increase the M1 to M2-polarized tumor-associated macrophages ratio in the tumor microenvironment and have synergistic antitumor activity in combination with anti-programmed death-1/ligand-1 agents. SNOW is a window-of-opportunity study designed to evaluate the immune and molecular effects of preoperative sitravatinib and nivolumab in patients with oral cavity squamous cell carcinoma.MethodsPatients with newly-diagnosed untreated T2-4a, N0-2 or T1 >1 cm-N2 oral cavity carcinomas were eligible. All patients received sitravatinib 120 mg daily from day 1 up to 48 hours pre-surgery and one dose of nivolumab 240 mg on day 15. Surgery was planned between day 23 and 30. Standard of care adjuvant radiotherapy was given based on clinical stage. Tumor photographs, fresh tumor biopsies and blood samples were collected at baseline, at day 15 after sitravatinib alone, and at surgery after sitravatinib–nivolumab combination. Tumor flow cytometry, multiplex immunofluorescence staining and single-cell RNA sequencing (scRNAseq) were performed on tumor biopsies to study changes in immune-cell populations. Tumor whole-exome sequencing and circulating tumor DNA and cell-free DNA were evaluated at each time point.ResultsTen patients were included. Grade 3 toxicity occurred in one patient (hypertension); one patient required sitravatinib dose reduction, and one patient required discontinuation and surgery delay due to G2 thrombocytopenia. Nine patients had clinical-to-pathological downstaging, with one complete response. Independent pathological treatment response (PTR) assessment confirmed a complete PTR and two major PTRs. With a median follow-up of 21 months, all patients are alive with no recurrence. Circulating tumor DNA and cell-free DNA dynamics correlated with clinical and pathological response and distinguished two patient groups with different tumor biological behavior after sitravatinib alone (1A) versus sitravatinib–nivolumab (1B). Tumor immunophenotyping and scRNAseq analyses revealed differential changes in the expression of immune cell populations and sitravatinib-targeted and hypoxia-related genes in group 1A vs 1B patients.ConclusionsThe SNOW study shows sitravatinib plus nivolumab is safe and leads to deep clinical and pathological responses in oral cavity carcinomas. Multi-omic biomarker analyses dissect the differential molecular effects of sitravatinib versus the sitravatinib–nivolumab and revealed patients with distinct tumor biology behavior.Trial registration numberNCT03575598.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e13534-e13534
Author(s):  
Jason Terrell ◽  
Priscilla Van den Ackerveken ◽  
Alison Lobbens ◽  
Mark Eccleston ◽  
Clotilde Hannart ◽  
...  

e13534 Background: In liquid biopsy, circulating tumor DNA (ctDNA) is more fragmented than background cell free DNA, peaking at 147bp (equivalent to a mono-nucleosome) instead of 165bp (nucleosome with an additional 20bp of linker DNA). Isolation of these shorter cell free DNA fragments from longer, extracted cell-free DNA improves detection of ctDNA as demonstrated by enrichment of tumor specific mutations. Nuclease protection of the additional 20bp of linker DNA, conferred by bound linker proteins such as Histone 1, would account for the 165bp peak in host background DNA. We hypothesised that extracting intact nucleosomes with linker DNA using a novel, H1 antigen based, immunocapture approach would enrich the ctDNA fraction in the remaining nucleosomes. Methods: We expressed H1.0 protein in E. coli and following extraction, purification and chemically immobilised it to tosyl-activated magnetic beads. The beads were first used to immunodeplete mono-nucleosomes from HeLa cell digests and the level of immunocaptured nucleosomes was determined by immunoassay targeting intact nucleosomes. The level of nucleosome levels determined before and after depletion was further determined by ELISA targeting H3.1 containing intact nucleosomes. DNA was extracted from the H1 immunocaptured “long” nucleosomes and size profiles compared with the remaining nucleosomes in the supernatant by BioAnalyzer. Then, the method was applied to clinical plasma samples and the size distribution of NGS Libraries (Illumina system) prepared from five colorectal cancer and three healthy samples, their immune depleted supernatants and the immunocaptured nucleosomes were then compared. Enrichment of specific genomic regions was also evaluated. Results: We observed relative enrichment of nucleosomes with short DNA in supernatants following H1 immuno-depletion of the cancer samples as evidenced by a change in size distribution by Bioanalyzer and NGS-sequencing. We also observed potential enrichment of TSS is the H1 immunocaptured nucleosomes consistent with linker DNA positioning of TF binding sites. Conclusions: Histone 1.0 has the highest affinity of H1 mammalian isoforms and successfully immunodepleted plasma samples containing cell free circulating nucleosomes with DNA longer that 147bp. Immobilized H1.0 effectively formed a pseudo-chromatosome by binding to free linker DNA or displacing endogenous H1 and other linker associated proteins. H1 antigen based immuno-depletion offers a simple way to enrich tumour derived nucleosomes and thus cell free DNA.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peter Peneder ◽  
Adrian M. Stütz ◽  
Didier Surdez ◽  
Manuela Krumbholz ◽  
Sabine Semper ◽  
...  

AbstractSequencing of cell-free DNA in the blood of cancer patients (liquid biopsy) provides attractive opportunities for early diagnosis, assessment of treatment response, and minimally invasive disease monitoring. To unlock liquid biopsy analysis for pediatric tumors with few genetic aberrations, we introduce an integrated genetic/epigenetic analysis method and demonstrate its utility on 241 deep whole-genome sequencing profiles of 95 patients with Ewing sarcoma and 31 patients with other pediatric sarcomas. Our method achieves sensitive detection and classification of circulating tumor DNA in peripheral blood independent of any genetic alterations. Moreover, we benchmark different metrics for cell-free DNA fragmentation analysis, and we introduce the LIQUORICE algorithm for detecting circulating tumor DNA based on cancer-specific chromatin signatures. Finally, we combine several fragmentation-based metrics into an integrated machine learning classifier for liquid biopsy analysis that exploits widespread epigenetic deregulation and is tailored to cancers with low mutation rates. Clinical associations highlight the potential value of cfDNA fragmentation patterns as prognostic biomarkers in Ewing sarcoma. In summary, our study provides a comprehensive analysis of circulating tumor DNA beyond recurrent genetic aberrations, and it renders the benefits of liquid biopsy more readily accessible for childhood cancers.


Sign in / Sign up

Export Citation Format

Share Document