Long-term urban growth and water demand in Asia

2008 ◽  
pp. 483-489
Author(s):  
Shinji Kaneko ◽  
Karen Ann B. Jago-on
Keyword(s):  
2021 ◽  
Vol 13 (5) ◽  
pp. 949
Author(s):  
Salman Qureshi ◽  
Saman Nadizadeh Shorabeh ◽  
Najmeh Neysani Samany ◽  
Foad Minaei ◽  
Mehdi Homaee ◽  
...  

Due to irregular and uncontrolled expansion of cities in developing countries, currently operational landfill sites cannot be used in the long-term, as people will be living in proximity to these sites and be exposed to unhygienic circumstances. Hence, this study aims at proposing an integrated approach for determining suitable locations for landfills while considering their physical expansion. The proposed approach utilizes the fuzzy analytical hierarchy process (FAHP) to weigh the sets of identified landfill location criteria. Furthermore, the weighted linear combination (WLC) approach was applied for the elicitation of the proper primary locations. Finally, the support vector machine (SVM) and cellular automation-based Markov chain method were used to predict urban growth. To demonstrate the applicability of the developed approach, it was applied to a case study, namely the city of Mashhad in Iran, where suitable sites for landfills were identified considering the urban growth in different geographical directions for this city by 2048. The proposed approach could be of use for policymakers, urban planners, and other decision-makers to minimize uncertainty arising from long-term resource allocation.


2021 ◽  
Author(s):  
Hao Xu ◽  
Xu Lian ◽  
Ingrid Slette ◽  
Hui Yang ◽  
Yuan Zhang ◽  
...  

Abstract The timing and length of the dry season is a key factor governing ecosystem productivity and the carbon cycle of the tropics. Mounting evidence has suggested a lengthening of the dry season with ongoing climate change. However, this conclusion is largely based on changes in precipitation (P) compared to its long-term average (P ̅) and lacks consideration of the simultaneous changes in ecosystem water demand (measured by potential evapotranspiration, Ep, or actual evapotranspiration, E). Using several long-term (1979-2018) observational datasets, we compared changes in tropical dry season length (DSL) and timing (dry season arrival, DSA, and dry season end, DSE) among three common metrics used to define the dry season: P < P ̅, P < Ep, and P < E. We found that all three definitions show that dry seasons have lengthened in much of the tropics since 1979. Among the three definitions, P < E estimates the largest fraction (49.0%) of tropical land area likely experiencing longer dry seasons, followed by P < Ep (41.4%) and P < P ̅ (34.4%). The largest differences in multi-year mean DSL (> 120 days) among the three definitions occurred in the most arid and the most humid regions of the tropics. All definitions and datasets consistently showed longer dry seasons in southern Amazon (due to delayed DSE) and central Africa (due to both earlier DSA and delayed DSE). However, definitions that account for changing water demand estimated longer DSL extension over those two regions. These results indicate that warming-enhanced evapotranspiration exacerbates dry season lengthening and ecosystem water deficit. Thus, it is necessity to account for the evolving water demand of tropical ecosystems when characterizing changes in seasonal dry periods and ecosystem water deficits in an increasingly warmer and drier climate.


Author(s):  
Roland Fletcher

The materiality of urbanism encompasses the words and actions by which we relate ourselves to it, the economics of its creation and maintenance, the impact of the material on the viability of community life, and also the long-term trajectories of urban growth and decline. Archaeological approaches to urban materiality tend to focus on how people seek to use the material and also emphasize what the material meant, in verbal terms, to its users. This article focuses on urban materialities, its meaning, magnitude, friction, and outcomes. This article further discusses words, metaphors, and urban materials. In discussing metaphor the material scholars have recognized ‘an inherent problem in the precise relationship between a world of words and world of things’. This article discusses the process of analyzing transformation through time. A detailed analysis on the growth and changing trends in urban industrialization concludes this article.


2020 ◽  
Vol 26 (4) ◽  
pp. 463-479
Author(s):  
Christopher J. Eastoe

ABSTRACT Stable O and H isotope data distinguish three sources for base flow in five reaches of the San Pedro River: (A) base flow and sub-flow from upstream reaches of the river; (B) bank storage derived from summer monsoon floodwater; and (C) water from the mountainous flanks of the river catchment. A and C support base flow in the sub-basin upstream of Sierra Vista. A, B, and C combine to support base flow near St. David. Source C in this area is ancient deep-basin groundwater. Source C dominates in Cascabel near Benson Narrows, with downstream additions from A. In Cascabel near Gamez Road, sources A and C combined to support base flow that had disappeared by 2019. Near Redington, source C appears to have operated through a limestone aquifer vulnerable to short-term drought. Groundwater sub-basins separated by impermeable sills in the riverbed are evolving into hydrologically separate sub-basins as base flow across the sills decreases. The decrease in base flow partly reflects regional long-term drought, which has been exacerbated by pumping. Additional groundwater demand from urban growth upstream of Benson is likely to cause further decline of base flow near St. David and Sierra Vista.


2020 ◽  
pp. 251484862095232
Author(s):  
Emiliano Scanu ◽  
Geneviève Cloutier ◽  
Catherine Trudelle

Urban environmental governance and planning are increasingly characterized by the adoption of “sustainability fixes,” namely political compromises which try to conciliate economic and ecological goals in order to safeguard long-term growth. If sustainability fixes have been harshly criticized for being sociospatially selective, resistance to them does not always come from radical groups who demand stronger and fairer measures, but from actors who oppose the idea of sustainability because it goes against their interests, habits, or values. This paper focuses on this “contestation of the greening of the urban growth machine,” by presenting an empirical study of a sustainable mobility policy in Quebec City, Canada, which has given rise to a controversy opposing two divergent perspectives. The first is an ecological modernization discourse advocating for a green and attractive public transit system. The second is a promethean counter-discourse which supports the unconditional growth of automobility and urban sprawl. Results show that even if urban environmental policies are increasingly attuned to the “growth first” logic, they could still face strong opposition, especially from suburban and conservative interests. More generally, this paper shows that, in some contexts, sustainability fixes could be a “better than nothing” solution, namely a step toward fairer and greener cities.


2017 ◽  
Vol 8 (3) ◽  
pp. 432-446 ◽  
Author(s):  
O. K. M. Ouda ◽  
Y. Khalid ◽  
A. H. Ajbar ◽  
M. Rehan ◽  
K. Shahzad ◽  
...  

Abstract The Kingdom of Saudi Arabia (KSA) is situated in an arid region and faces a chronic challenge to meet its increasing water demand. Riyadh is the capital of KSA and home to about six million people. The water demand is mostly met by groundwater resources (up to 48%), while the desalination plants cover the rest of the water supply requirements. There is a potential risk of a significant gap in water demand–supply due to the retirement of old desalination plants. This study, therefore, developed a probabilistic model to forecast desalinated water demand in Riyadh for domestic purposes up to the year 2040 based on three scenarios: low growth, the most likely (mean), and high growth scenario. The results showed that an investment of about US$6.24, 11.59, and 16.04 billion is required to meet the future domestic water demand of the city for the next 25 years based on low, mean, and high growth scenarios, respectively. Moreover, a strong commitment to public–private partnership is required to remove the fiscal budget burden related to the desalination along with public awareness campaigns to reduce per capita water consumption, upgrading the water tariff system and using renewable energy to run desalination plants.


2001 ◽  
Vol 43 (5) ◽  
pp. 153-162 ◽  
Author(s):  
E. A. Cassell ◽  
R. L. Kort ◽  
D. W. Meals ◽  
S. G. Aschmann ◽  
J. M. Dorioz ◽  
...  

The principles of mass balance, compartment-flux diagramming, and dynamic simulation modeling are integrated to create computer models that estimate phosphorus (P) export from large-scale watersheds over long-term futures. These Watershed Ecosystem Nutrient Dynamics (WEND) models are applied to a 275,000 ha dairy-documented watershed and a 77,000 ha poultry-dominated watershed in northeastern USA. Model predictions of present-day P export loads are consistent with monitoring data and estimates made using P export coefficients. For both watersheds P import exceeds P export and P is accumulating in the agricultural soils. Agricultural and urban activities are major contributors to P export from both watersheds. Continued urban growth will increase P export over time unless wastewater management is substantially enhanced and/or rates of urban growth are controlled. Agriculture cannot rely solely on the implementation of increasingly stringent conservation practices to reduce long-term P export but mustconsider options that promote P input/output balance. The WEND modeling process is a powerful tool to integrate the diversity of activities in watersheds into a holistic framework. Model outputs are suited to assist managers to explore long-term effects of overall watershed management strategies on P export in comparison to environmental and economic goals.


2020 ◽  
Author(s):  
Fabian Drenkhan ◽  
Randy Muñoz ◽  
Christian Huggel ◽  
Holger Frey ◽  
Fernando Valenzuela ◽  
...  

&lt;p&gt;In the Tropical Andes, glaciers play a fundamental role for sustaining human livelihoods and ecosystems in headwater areas and further downstream. However, current rates of glacier shrinkage driven by climate change as well as increasing water demand levels bear a threat to long-term water supply. While a growing number of research has covered impacts of climate change and glacier shrinkage on the terrestrial water cycle and potential disaster risks, the associated potential economic losses have barely been assessed.&lt;/p&gt;&lt;p&gt;Here we present an integrated surface-groundwater assessment model for multiple water sectors under current conditions (1981-2016) and future scenarios (2050) of glacier shrinkage and growing water demand. As a case, the lumped model has been applied to the Santa river basin (including the Cordillera Blanca, Andes of Peru) within three subcatchments and considers effects from evapotranspiration, environmental flows and backflows of water use. Therefore, coupled greenhouse gas concentration (RCP2.6 and RCP8.5) and socioeconomic scenarios are used, which provide a broad range of the magnitude of glacier and water volume changes and associated economic impacts. Finally, net water volume released on the long term due to deglaciation effects is quantified and by multiple metrics converted into potential economic costs and losses for the agriculture, household and hydropower sectors. Additionally, the potential damages from outburst floods from current and future lakes have been included. Results for the entire Santa river basin show that water availability would diminish by about 11-16% (57-78 10&lt;sup&gt;6&lt;/sup&gt; m&amp;#179;) in the dry season (June-August) and by some 7-10% (103-155 10&lt;sup&gt;6&lt;/sup&gt; m&amp;#179;) during the wet season (December-February) under selected glacier shrinkage scenarios until 2050. This is a consequence of diminishing glacier contribution to streamflow which until 2050 would reduce from about 45% to 33% for June-August and from 6% to 4% for December-February. A first rough estimate suggests associated economic losses for main water demand sectors (agriculture, hydropower, drinking water) on the order of about 300 10&lt;sup&gt;6&lt;/sup&gt; USD/year by 2050. Additionally, with ongoing glacier shrinkage and the formation of new lakes, about 45,000 inhabitants and 30,000 buildings are expected to be exposed to the risk of outburst floods in the 21&lt;sup&gt;st&lt;/sup&gt; century.&lt;/p&gt;&lt;p&gt;The pressure on water resources and interconnected socio-eonvironmental systems in the basin is already challenging and expected to further exacerbate within the next decades. Currently, water demand levels are considerably increasing driven by growing irrigated (export) agriculture, population and energy demand which is in a large part sustained by hydropower. A coupling of potential water scarcity driven by climate change with a lack of water governance and high human vulnerabilities, bears strong conflict potentials with negative feedbacks for socio-economic development in the Santa basin and beyond. In this context, our coupled hydro-glacial economic impact model provides important support for future decision-making and long-term water management planning. However, uncertainties are relatively high (uncertainty range to be estimated) due to a lack of (good) hydro-climatic and socio-economic information at appropriate spatiotemporal scales. The presented model framework is potentially transferable to other high mountain catchments in the Tropical Andean region and beyond.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document