The de Broglie Wave Nature of Molecules, Clusters and Nanoparticles

2019 ◽  
pp. 2-1-2-24
Author(s):  
Stefan Gerlich ◽  
Stefan Kuhn ◽  
Armin Shayeghi ◽  
Markus Arndt
Keyword(s):  
Author(s):  
R. D. Heidenreich

This program has been organized by the EMSA to commensurate the 50th anniversary of the experimental verification of the wave nature of the electron. Davisson and Germer in the U.S. and Thomson and Reid in Britian accomplished this at about the same time. Their findings were published in Nature in 1927 by mutual agreement since their independent efforts had led to the same conclusion at about the same time. In 1937 Davisson and Thomson shared the Nobel Prize in physics for demonstrating the wave nature of the electron deduced in 1924 by Louis de Broglie.The Davisson experiments (1921-1927) were concerned with the angular distribution of secondary electron emission from nickel surfaces produced by 150 volt primary electrons. The motivation was the effect of secondary emission on the characteristics of vacuum tubes but significant deviations from the results expected for a corpuscular electron led to a diffraction interpretation suggested by Elasser in 1925.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4097
Author(s):  
Hee-Dong Jeong ◽  
Seong-Won Moon ◽  
Seung-Yeol Lee

Diffraction is a fundamental phenomenon that reveals the wave nature of light. When a plane wave is transmitted or reflected from a grating or other periodic structures, diffracted light waves propagate at several angles that are specified by the period of the given structure. When the optical period is shorter than the wavelength, constructive interference of diffracted light rays from the subwavelength-scale grating forms a uniform plane wave. Many studies have shown that through the appropriate design of meta-atom geometry, metasurfaces can be used to control light properties. However, most semitransparent metasurfaces are designed to perform symmetric operation with regard to diffraction, meaning that light diffraction occurs identically for front- and back-side illumination. We propose a simple single-layer plasmonic metasurface that achieves asymmetric diffraction by optimizing the transmission phase from two types of nanoslits with I- and T-shaped structures. As the proposed structure is designed to have a different effective period for each observation side, it is either diffractive or nondiffractive depending on the direction of observation. The designed structure exhibits a diffraction angle of 54°, which can be further tuned by applying different period conditions. We expect the proposed asymmetric diffraction meta-grating to have great potential for the miniaturized optical diffraction control systems in the infrared band and compact optical diffraction filters for integrated optics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Byoung S. Ham

AbstractOver the last several decades, entangled photon pairs generated by spontaneous parametric down conversion processes in both second-order and third-order nonlinear optical materials have been intensively studied for various quantum features such as Bell inequality violation and anticorrelation. In an interferometric scheme, anticorrelation results from photon bunching based on randomness when entangled photon pairs coincidently impinge on a beam splitter. Compared with post-measurement-based probabilistic confirmation, a coherence version has been recently proposed using the wave nature of photons. Here, the origin of quantum features in a coupled interferometric scheme is investigated using pure coherence optics. In addition, a deterministic method of entangled photon-pair generation is proposed for on-demand coherence control of quantum processing.


Author(s):  
Roman Ivanov ◽  

The article deals with certain issues of the introduction and functioning of the circular economy, the introduction of which allows you to obtain positive environmental, economic and social effects. It is noted that it is characterized by the emergence of synergistic effects in the conditions of development of ecological and economic systems, which create conditions for their advancement towards a state of sustainable development. A model of the subject of a circular economy in the context of sustainable development, which reflects the transformative essence, wave nature and cyclical nature of economic processes within the framework of the wave-particle concept of the formation of economic behavior, is proposed and analyzed. The model is formulated in accordance with the methodological principles of describing material flows, which are based on the phenomenological assumption that their kinetics is isomorphic to the dynamics of a continuous medium. The presented construct was named “economic dipole”. The model is built in the state space, the coordinates of which characterize the quantitative and qualitative indicators of the studied subject. The model reflects the self-organizing nature of the management of a circular economy entity, the balance between production and consumption and cyclical movement within the framework of such a circular economy business model as resource recovery. It minimizes the cost of resources by increasing the efficiency of production through reverse flows. The adequacy and information content of the model was checked by analyzing the fields of speed and motivation, the connection of which in the context of sustainable development is represented by the equation of maintaining overall motivation, which consists of a motivating and compensating component. It is shown that the subject of the circular economy is more motivated for sustainable development and overcoming the negative consequences of production than for maintaining the existing state, which reflects the key positive effects of introducing a circular economy.


2019 ◽  
Vol 220 ◽  
pp. 01002
Author(s):  
S.M. Arakelian ◽  
A.O. Kucherik ◽  
T.A. Khudaberganov ◽  
D.N. Bukharov

Nanocluster structures can be easily modified in necessary direction and by controlled way in femtonanophotonics experiments. The variation of the key topology parameters can result in new type of the quantum correlation states/size effect for charged particles. In our earlier experiments we studied laser-induced topological nanoclusters structures of different types in thin films with unique phenomena in electrophysics and optics (see [1-3]). A simple 2-steps mechanism for enhancement of quantum behavior (e.g. in electroconductivity) exists for different conditions. First, when inelastic length linelastic > acluster we have no incoherent electron-phonon (e-ph) scattering, i.e. the coherent process takes place. Second, when de Broglie wave length λdB ≡ ℓcoh < Λ, (acluster – cluster size , Λ – spatial period of nanoparticle distribution) the coherent tunneling without loss occurs, and a long-range order with interference of the states takes place in the medium due to lattice structure.


Sign in / Sign up

Export Citation Format

Share Document