Time-varying fragility functions for bridges subject to main shock-aftershock sequences including damage accumulation during the events and calibration based on available data

Author(s):  
L. Iannacone ◽  
P. Gardoni
2015 ◽  
Vol 31 (1) ◽  
pp. 115-135 ◽  
Author(s):  
Jayadipta Ghosh ◽  
Jamie E. Padgett ◽  
Mauricio Sánchez-Silva

Civil infrastructures, such as highway bridges, located in seismically active regions are often subjected to multiple earthquakes, including multiple main shocks during their service life or main shock–aftershock sequences. Repeated seismic events result in reduced structural capacity and may lead to bridge collapse, causing disruption in the normal functioning of transportation networks. This study proposes a framework to predict damage accumulation in structures subjected to multiple shock scenarios after developing damage index prediction models and accounting for the probabilistic nature of the hazard. The versatility of the proposed framework is demonstrated on a case-study highway bridge located in California for two distinct hazard scenarios: (1) multiple main shocks during the service life and (2) multiple aftershock earthquake occurrences following a single main shock. Results reveal that in both cases there is a significant increase in damage index exceedance probabilities due to repeated shocks within the time window of interest.


2020 ◽  
Author(s):  
Wei-Fang Sun ◽  
Hao Kuo-Chen ◽  
Zhuo-Kang Guan ◽  
Wen-Yen Chang

<p>In the Hualien area, two Mw6.4 and Mw6.2 earthquakes, 20 km apart, occurred in February 2018 and April 2019 respectively. The former to the northeast, located offshore to ​​the Liwu river, triggered several earthquake clusters along the Milun fault and southward to the Longitudinal Valley, the suture of the Eurasian and the Philippine Sea plates; the latter to the southwest, located in the Central Range, also triggered several seismic swarms in the Central Range,  along the Liwu river to the northeast and at Ji'an to the southeast. Except for the Milun fault, neither GPS nor InSAR observations detects significant surface deformation after the occurrence of these two main shocks, indicating that the earthquake ruptures mainly developed within the crust. Therefore, seismic observation becomes an efficient tool for revealing the seismotectonics of the two earthquake sequences. For monitoring the aftershock sequences, two days after the main shocks, we deployed two geophone arrays, 70 Z-component RefTek 125A TEXANs for two weeks in 2018 and 47 three-component Fairfield Nodal Z-Lands for one month in 2019, with 1-5 km station spacing around the Hualien City. These earthquake swarms were well recorded and analyzed through the dense seismic networks. The numbers of aftershock sequences manually identified are two-fold more than that issued by the Central Weather Bureau, Taiwan. The seismicity of the 2018 aftershock sequence, to depths of between 5-15 km, was significantly reduced within 10 days after the main shock. however, the seismicity of the 2019 aftershock sequence, to depths of between 2-50 km, was still above background seismicity rate 30 days after the main shock. The spatial distribution of the 2018 aftershock sequence could be related to a fault zone of the plate boundary, but that of the 2019 and the relocated 1986 aftershock sequences show a conjugate thrust fault pair beneath the eastern Central Range. Our results clearly depict several local tectonic structures that have not been observed at the northern tip of the Longitudinal Valley, not only a suture but also a transitional area from collision to subduction.</p>


1973 ◽  
Vol 63 (4) ◽  
pp. 1433-1446
Author(s):  
S. J. Gibowicz

abstract Eighteen aftershock sequences, nine from California and nine from New Zealand, are studied. It is found that a general relationship exists between the local magnitude ML and the stress drop in the main shock. The stress drop in the main earthquake determines the principal characteristics of the aftershock sequences. A low stress drop leads to a low value of the coefficient b, high magnitude of the largest aftershock, and short duration, and conversely. A sequence is arbitrarily considered to be over when the rate of aftershock occurrence falls to a value of one shock per day. The duration depends on the area of fault surface and the stress drop in the main shock. For an average stress drop, the coefficient b has a value of 0.8 to 0.9, and the difference in magnitude between the main shock and the largest aftershock is 1.2, a relation often called Båth's law.


1984 ◽  
Vol 74 (1) ◽  
pp. 255-265
Author(s):  
Zheng-rong Liu

Abstract The coefficient p in n(t) = n1t−p, where n(t) is the daily count of earthquakes and n1 is the number of earthquakes on the first day following a larger earthquake, is ≦1 for foreshock sequences, ≳1 for double-main shock sequences, and »1 for aftershock sequences with a single largest earthquake. For p »1, the magnitude of the largest aftershock and the cutoff time of the aftershocks can be estimated. These observations are the basis for an earthquake prediction technique successfully used in the Peoples Republic of China (PRC).


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Liaojun Zhang ◽  
Yafei Zhai ◽  
Binghui Cui ◽  
Yujie Tang ◽  
Zhonghui Bi

The traditional linear elastic and Drucker–Prager (DP) models cannot truly reflect the strong nonlinear characteristics of the concrete and rock foundation of the dam under earthquake. Therefore, for comprehensive evaluation of the cumulative damage of the gravity dam structure caused by aftershock, the dynamic damage of the dam body concrete is analyzed by many scholars through the plastic damage mechanics method, but there is little research on rock material at the dam foundation with the method utilized; thus, the simulation of the whole dynamic damage evolution is worthy of investigation of the dam body and dam foundation. According to the randomness of ground motion, the transcendental probability (P) is introduced to express the statistical characteristics of aftershock intensity, and a new method for constructing main-aftershock sequences of ground motion is proposed in this paper. And then, the law of the damage evolution and energy characteristics of the concrete gravity dam under the combined action of the main shock and aftershock sequences is studied. The results are shown as follows: the smaller aftershocks do not cause further damage to the dam; as the aftershock intensity increases, the energy characteristics of the dam body and foundation have shown different changing rules; when the ratio of peak aftershock acceleration to peak main shock acceleration (∇PGA) approximately equals 0.68, the aftershock will cause larger secondary damage to the dam.


1977 ◽  
Vol 67 (2) ◽  
pp. 463-478
Author(s):  
So Gu Kim ◽  
Otto W. Nuttli

Abstract A number of main shock-aftershock sequences in the Eurasian interior contain some aftershocks whose mb:MS values are close to those of underground explosions. This paper is concerned with a study of the amplitude spectra of the P waves and Rayleigh waves for earthquakes of those main shock-aftershock sequences. It is found that for any given sequence studied, there is little if any variation in focal depth or focal mechanism. This rules out variations in these quantities as being the cause of anomalous mb:MS values. A study of the P-wave spectra establishes that one or both of the corner periods of anomalous earthquakes are smaller than those of non-anomalous earthquakes of the same moment. Thus the cause of anomalous mb:MS values of the earthquakes studied is a relative enrichment of the short-period portion of the spectrum of the anomalous events, which cannot be attributed to focal depth or focal mechanism.


2016 ◽  
Vol 32 (4) ◽  
pp. 2149-2166 ◽  
Author(s):  
Changhai Zhai ◽  
Duofa Ji ◽  
Weiping Wen ◽  
Weidong Lei ◽  
Lili Xie ◽  
...  

This study investigates the input energy spectra for inelastic single-degree-of-freedom (SDOF) systems under main shock–aftershock sequences. The input energy spectra quantitatively reveal the effects of aftershocks on input energy, which verifies the necessity of incorporating aftershocks in energy-based seismic design. The investigation selects the sequences including one aftershock or two aftershocks respectively, according to the proposed criteria for selecting earthquake records. Then, the input energy for sequences is normalized by mass, m, and expressed in terms of the equivalent velocity, V E, seq. Next, the variation of V E, seq is studied in consideration of the hysteretic models, ductility values, periods of vibration, site conditions, relative intensities of aftershocks and number of aftershocks. The results indicate that the effects of aftershocks on input energy are significant in almost the whole period region. Finally, a simplified expression of input energy is proposed for incorporating aftershocks in energy-based seismic design.


2015 ◽  
Vol 26 (07) ◽  
pp. 1550077 ◽  
Author(s):  
Min Lin ◽  
Gang Zhao ◽  
Gang Wang

In this study, recurrence plot (RP) and recurrence quantification analysis (RQA) techniques are applied to a magnitude time series composed of seismic events occurred in California region. Using bootstrapping techniques, we give the statistical test of the RQA for detecting dynamical transitions. From our results, we find the different patterns of RPs for magnitude time series before and after the M6.1 Joshua Tree Earthquake. RQA measurements of determinism (DET) and laminarity (LAM) quantifying the order with confidence levels also show peculiar behaviors. It is found that DET and LAM values of the recurrence-based complexity measure significantly increase to a large value at the main shock, and then gradually recovers to a small values after it. The main shock and its aftershock sequences trigger a temporary growth in order and complexity of the deterministic structure in the RP of seismic activity. It implies that the onset of the strong earthquake event is reflected in a sharp and great simultaneous change in RQA measures.


Sign in / Sign up

Export Citation Format

Share Document