Influence of Layer Thickness and Orientation on Tensile Strength and Surface Roughness of FDM-Built Parts

Author(s):  
Praveen Kumar Nayak ◽  
Anshuman Kumar Sahu ◽  
Siba Sankar Mahapatra
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


2015 ◽  
Vol 67 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Mumin Sahin ◽  
Cenk Misirli ◽  
Dervis Özkan

Purpose – The purpose of this paper is to examine mechanical and metallurgical properties of AlTiN- and TiN-coates high-speed steel (HSS) materials in detail. Design/methodology/approach – In this study, HSS steel parts have been processed through machining and have been coated with AlTiN and TiN on physical vapour deposition workbench at approximately 6,500°C for 4 hours. Tensile strength, fatigue strength, hardness tests for AlTiN- and TiN-coated HSS samples have been performed; moreover, energy dispersive X-ray spectroscopy and X-ray diffraction analysis and microstructure analysis have been made by scanning electron microscopy. The obtained results have been compared with uncoated HSS components. Findings – It was found that tensile strength of TiAlN- and TiN-coated HSS parts is higher than that of uncoated HSS parts. Highest tensile strength has been obtained from TiN-coated HSS parts. Number of cycles for failure of TiAlN- and TiN-coated HSS parts is higher than that for HSS parts. Particularly TiN-coated HSS parts have the most valuable fatigue results. However, surface roughness of fatigue samples may cause notch effect. For this reason, surface roughness of coated HSS parts is compared with that of uncoated ones. While the average surface roughness (Ra) of the uncoated samples was in the range of 0.40 μm, that of the AlTiN- and TiN-coated samples was in the range of 0.60 and 0.80 μm, respectively. Research limitations/implications – It would be interesting to search different coatings for cutting tools. It could be the good idea for future work to concentrate on wear properties of tool materials. Practical implications – The detailed mechanical and metallurgical results can be used to assess the AlTiN and TiN coating applications in HSS materials. Originality/value – This paper provides information on mechanical and metallurgical behaviour of AlTiN- and TiN-coated HSS materials and offers practical help for researchers and scientists working in the coating area.


Author(s):  
Sunil Dutt Baloni ◽  
Somesh K. Sharma ◽  
Jagroop Singh ◽  
Sushant Negi

The contribution of selective laser sintering (SLS) technique in the 4.0 manufacturing industry is undisputedly significant. SLS part quality exhibits high dependence on SLS process parameters and is a major challenge. Therefore, this research aims to investigate the effect of input parameters (i.e., part orientation, bed temperature, and layer thickness) on the surface roughness and accuracy of laser-sintered polyamide specimens. Response surface methodology (RSM) and ANOVA analysis aided the testing and evaluation. Optimal working conditions for minimum shrinkage were 0.17 mm layer thickness, 177.89°C part bed temperature, and part orientation at 88.91 degrees. The surface quality deteriorated with the increment in part bed temperature and layer thickness, and it shows an inverse trend (or improves) with the part orientation in the prescribed range. The optimal surface roughness was at a layer thickness of 0.11 mm, bed temperature at 174.55°C, and part orientation at 86.5 degrees.


2019 ◽  
Vol 26 (3) ◽  
pp. 473-483
Author(s):  
Muhammad Omar Shaikh ◽  
Ching-Chia Chen ◽  
Hua-Cheng Chiang ◽  
Ji-Rong Chen ◽  
Yi-Chin Chou ◽  
...  

Purpose Using wire as feedstock has several advantages for additive manufacturing (AM) of metal components, which include high deposition rates, efficient material use and low material costs. While the feasibility of wire-feed AM has been demonstrated, the accuracy and surface finish of the produced parts is generally lower than those obtained using powder-bed/-feed AM. The purpose of this study was to develop and investigate the feasibility of a fine wire-based laser metal deposition (FW-LMD) process for producing high-precision metal components with improved resolution, dimensional accuracy and surface finish. Design/methodology/approach The proposed FW-LMD AM process uses a fine stainless steel wire with a diameter of 100 µm as the additive material and a pulsed Nd:YAG laser as the heat source. The pulsed laser beam generates a melt pool on the substrate into which the fine wire is fed, and upon moving the X–Y stage, a single-pass weld bead is created during solidification that can be laterally and vertically stacked to create a 3D metal component. Process parameters including laser power, pulse duration and stage speed were optimized for the single-pass weld bead. The effect of lateral overlap was studied to ensure low surface roughness of the first layer onto which subsequent layers can be deposited. Multi-layer deposition was also performed and the resulting cross-sectional morphology, microhardness, phase formation, grain growth and tensile strength have been investigated. Findings An optimized lateral overlap of about 60-70% results in an average surface roughness of 8-16 µm along all printed directions of the X–Y stage. The single-layer thickness and dimensional accuracy of the proposed FW-LMD process was about 40-80 µm and ±30 µm, respectively. A dense cross-sectional morphology was observed for the multilayer stacking without any visible voids, pores or defects present between the layers. X-ray diffraction confirmed a majority austenite phase with small ferrite phase formation that occurs at the junction of the vertically stacked beads, as confirmed by the electron backscatter diffraction (EBSD) analysis. Tensile tests were performed and an ultimate tensile strength of about 700-750 MPa was observed for all samples. Furthermore, multilayer printing of different shapes with improved surface finish and thin-walled and inclined metal structures with a minimum achievable resolution of about 500 µm was presented. Originality/value To the best of the authors’ knowledge, this is the first study to report a directed energy deposition process using a fine metal wire with a diameter of 100 µm and can be a possible solution to improving surface finish and reducing the “stair-stepping” effect that is generally observed for wires with a larger diameter. The AM process proposed in this study can be an attractive alternative for 3D printing of high-precision metal components and can find application for rapid prototyping in a range of industries such as medical and automotive, among others.


“Slicing tool” or “Slicing Software” computes the intersection curves of models and slicing planes. They improve the quality of the model being printed when given in the form of STL file. Upon analyzing a specimen that has been printed using two different slicing tools, there was a drastic variation on account of the mechanical properties of the specimen. The ultimate tensile strength and the surface roughness of the material vary from one tool to another. This paper reports an investigation and analysis of the variation in the ultimate tensile strength and the surface roughness of the specimen, given that the 3D printer and the model being printed is the same, with a variation of usage of slicing software. This analysis includes ReplicatorG, Flashprint as the two different slicing tools that are used for slicing of the model. The variation in the ultimate tensile strength and the surface roughness are measured and represented statistically through graphs. An appropriate decisive conclusion was drawn on the basis of the observations and analysis of the experiment on relevance to the behavior and mechanical properties of the specimen.


2018 ◽  
Vol 17 (4-5) ◽  
pp. 438-466 ◽  
Author(s):  
Baofeng Cheng ◽  
Yiqiang Han ◽  
Kenneth S Brentner ◽  
Jose Palacios ◽  
Philip J Morris ◽  
...  

The change of helicopter rotor broadband noise due to different surface roughness during ice accretion is investigated. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand facility at The Pennsylvania State University, and the University of Maryland Acoustic Chamber. In both facilities, the measured high-frequency broadband noise increases significantly with increasing surface roughness height. Rotor broadband noise source identification is conducted and the broadband noise related to ice accretion is thought to be turbulent boundary layer-trailing edge noise. Theory suggests turbulent boundary layer-trailing edge noise scales with Mach number to the fifth power, which is also observed in the experimental data confirming that the dominant broadband noise mechanism during ice accretion is trailing edge noise. A correlation between the ice-induced surface roughness and the broadband noise level is developed. The correlation is strong, which can be used as an ice accretion early detection tool for helicopters, as well as to quantify the ice-induced roughness at the early stage of rotor ice accretion. The trailing edge noise theories developed by Ffowcs Williams and Hall, and Howe both identify two important parameters: boundary layer thickness and turbulence intensity. Numerical studies of two-dimensional airfoils with different ice-induced surface roughness heights are conducted to investigate the extent that surface roughness impacts the boundary layer thickness and turbulence intensity (and ultimately the turbulent boundary layer-trailing edge noise). The results show that boundary layer thickness and turbulence intensity at the trailing edge increase with the increased roughness height. Using Howe’s trailing edge noise model, the increased sound pressure level of the trailing edge noise due to the increased displacement thickness and normalized integrated turbulence intensity are 6.2 and 1.6 dB for large and small accreted ice roughness heights, respectively. The estimated increased sound pressure level values agree reasonably well with the experimental results, which are 5.8 and 2.6 dB for large and small roughness height, respectively.


2021 ◽  
pp. 251659842110311
Author(s):  
Shrikrishna Pawar ◽  
Dhananjay Dolas1

Fused deposition modeling (FDM) is one of the most commonly used additive manufacturing (AM) technologies, which has found application in industries to meet the challenges of design modifications without significant cost increase and time delays. Process parameters largely affect the quality characteristics of AM parts, such as mechanical strength and surface finish. This article aims to optimize the parameters for enhancing flexural strength and surface finish of FDM parts. A total of 18 test specimens of polycarbonate (PC)-ABS (acrylonitrile–butadiene–styrene) material are printed to analyze the effect of process parameters, viz. layer thickness, build orientation, and infill density on flexural strength and surface finish. Empirical models relating process parameters with responses have been developed by using response surface regression and further analyzed by analysis of variance. Main effect plots and interaction plots are drawn to study the individual and combined effect of process parameters on output variables. Response surface methodology was employed to predict the results of flexural strength 48.2910 MPa and surface roughness 3.5826 µm with an optimal setting of parameters of 0.14-mm layer thickness and 100% infill density along with horizontal build orientation. Experimental results confirm infill density and build orientation as highly significant parameters for impacting flexural strength and surface roughness, respectively.


Sign in / Sign up

Export Citation Format

Share Document