Improving furfural tolerance of recombinant E. coli in the fermentation of lignocellulosic sugars into ethanol

Author(s):  
Z. Huabao ◽  
X. Shuangyan ◽  
Z. Tao
2012 ◽  
Vol 78 (12) ◽  
pp. 4346-4352 ◽  
Author(s):  
Huabao Zheng ◽  
Xuan Wang ◽  
Lorraine P. Yomano ◽  
Keelnatham T. Shanmugam ◽  
Lonnie O. Ingram

ABSTRACTFurfural is an inhibitory side product formed during the depolymerization of hemicellulose by mineral acids. Genomic libraries from three different bacteria (Bacillus subtilisYB886,Escherichia coliNC3, andZymomonas mobilisCP4) were screened for genes that conferred furfural resistance on plates. Beneficial plasmids containing thethyAgene (coding for thymidylate synthase) were recovered from all three organisms. Expression of this key gene in thede novopathway for dTMP biosynthesis improved furfural resistance on plates and during fermentation. A similar benefit was observed by supplementation with thymine, thymidine, or the combination of tetrahydrofolate and serine (precursors for 5,10-methylenetetrahydrofolate, the methyl donor for ThyA). Supplementation with deoxyuridine provided a small benefit, and deoxyribose was of no benefit for furfural tolerance. A combination of thymidine and plasmid expression ofthyAwas no more effective than either alone. Together, these results demonstrate that furfural tolerance is increased by approaches that increase the supply of pyrimidine deoxyribonucleotides. However, ThyA activity was not directly affected by the addition of furfural. Furfural has been previously shown to damage DNA inE. coliand to activate a cellular response to oxidative damage in yeast. The added burden of repairing furfural-damaged DNA inE. coliwould be expected to increase the cellular requirement for dTMP. Increased expression ofthyA(E. coli,B. subtilis, orZ. mobilis), supplementation of cultures with thymidine, and supplementation with precursors for 5,10-methylenetetrahydrofolate (methyl donor) are each proposed to increase furfural tolerance by increasing the availability of dTMP for DNA repair.


2017 ◽  
Vol 245 ◽  
pp. 1430-1435 ◽  
Author(s):  
Hun-Suk Song ◽  
Jong-Min Jeon ◽  
Hyun-Joong Kim ◽  
Shashi Kant Bhatia ◽  
Ganesan Sathiyanarayanan ◽  
...  

2020 ◽  
Author(s):  
Syed Bilal Jilani ◽  
Chandra Dev ◽  
Danish Eqbal ◽  
Kamran Jawed ◽  
Rajendra Prasad ◽  
...  

Abstract Background: Furfural and 5-hydroxymethyl furfural (5-HMF) are key furan inhibitors that are generated due to breakdown of lignocellulosic sugars at high temperature and acidic treatment conditions. Both furfural and 5-HMF act in a synergistic manner to inhibit microbial metabolism and resistance to both is a desirable characteristic for efficient conversion of lignocellulosic carbon to ethanol. Genetic manipulations targeted toward increasing cellular NADPH pools have successfully imparted tolerance against furfural and 5-HMF. In present study, deletion of pgi gene as a strategy to augment carbon flow through pentose phosphate pathway (PPP) was studied in ethanologenic Escherichia coli strain SSK101 to impart tolerance towards either furfural or 5-HMFor both inhibitors together.Results: A key gene of EMP pathway, pgi, was deleted in an ethanologenic E. coli strain SSK42 to yield strain SSK101. In presence of 1 g/L furfural in minimal AM1 media, the rate of biomass formation for strain SSK101 was up to 1.9-fold higher as compared to parent SSK42 strain, and it was able to clear furfural in half the time. Tolerance to inhibitor was associated with glucose as carbon source and not xylose, and the tolerance advantage of SSK101 was neutralized in LB media. Bioreactor studies were performed under binary stress of furfural and 5-HMF (1 g/L each) and different glucose concentrations in a glucose-xylose mixture with final sugar concentration of 5.5%, mimicking major components of dilute acid treated biomass hydrolysate. In the mixture having 6 g/L and 12 g/L glucose, SSK101 strain produced ~18 g/L and 20 g/L ethanol, respectively. Interestingly, the maximum ethanol productivity was better at lower glucose load with 0.46 g/(L.h) between 96-120 h, as compared to higher glucose load where it was 0.33 g/(L.h) between 144-168 h. Importantly, parent strain SSK42 did not exhibit significant metabolic activity under similar conditions of inhibitor load and sugar concentration.Conclusions: E. coli strain SSK101 with pgi deletion had enhanced tolerance against both furfural and 5-HMF, which was associated with presence of glucose in media. Strain SSK101 also had improved fermentation characteristics under both hyperosmotic as well as binary stress of furfural and 5-HMF in media containing glucose-xylose mixture.


2010 ◽  
Vol 76 (15) ◽  
pp. 5067-5078 ◽  
Author(s):  
Clementina Dellomonaco ◽  
Carlos Rivera ◽  
Paul Campbell ◽  
Ramon Gonzalez

ABSTRACT Although lignocellulosic sugars have been proposed as the primary feedstock for the biological production of renewable fuels and chemicals, the availability of fatty acid (FA)-rich feedstocks and recent progress in the development of oil-accumulating organisms make FAs an attractive alternative. In addition to their abundance, the metabolism of FAs is very efficient and could support product yields significantly higher than those obtained from lignocellulosic sugars. However, FAs are metabolized only under respiratory conditions, a metabolic mode that does not support the synthesis of fermentation products. In the work reported here we engineered several native and heterologous fermentative pathways to function in E scherichia coli under aerobic conditions, thus creating a respiro-fermentative metabolic mode that enables the efficient synthesis of fuels and chemicals from FAs. Representative biofuels (ethanol and butanol) and biochemicals (acetate, acetone, isopropanol, succinate, and propionate) were chosen as target products to illustrate the feasibility of the proposed platform. The yields of ethanol, acetate, and acetone in the engineered strains exceeded those reported in the literature for their production from sugars, and in the cases of ethanol and acetate they also surpassed the maximum theoretical values that can be achieved from lignocellulosic sugars. Butanol was produced at yields and titers that were between 2- and 3-fold higher than those reported for its production from sugars in previously engineered microorganisms. Moreover, our work demonstrates production of propionate, a compound previously thought to be synthesized only by propionibacteria, in E. coli. Finally, the synthesis of isopropanol and succinate was also demonstrated. The work reported here represents the first effort toward engineering microorganisms for the conversion of FAs to the aforementioned products.


2020 ◽  
Author(s):  
Syed Bilal Jilani ◽  
Chandra Dev ◽  
Danish Eqbal ◽  
Kamran Jawed ◽  
Rajendra Prasad ◽  
...  

Abstract Background: Furfural and 5-hydroxymethyl furfural (5-HMF) are key furan inhibitors that are generated due to breakdown of lignocellulosic sugars at high temperature and acidic treatment conditions. Both furfural and 5-HMF act in a synergistic manner to inhibit microbial metabolism and resistance to both is a desirable characteristic for efficient conversion of lignocellulosic carbon to ethanol. Genetic manipulations targeted toward increasing cellular NADPH pools have successfully imparted tolerance against furfural and 5-HMF. In present study, deletion of pgi gene as a strategy to augment carbon flow through pentose phosphate pathway (PPP) was studied in ethanologenic Escherichia coli strain SSK101 to impart tolerance towards either furfural or 5-HMFor both inhibitors together.Results: A key gene of EMP pathway, pgi, was deleted in an ethanologenic E. coli strain SSK42 to yield strain SSK101. In presence of 1 g/L furfural in minimal AM1 media, the rate of biomass formation for strain SSK101 was up to 1.9-fold higher as compared to parent SSK42 strain, and it was able to clear furfural in half the time. Tolerance to inhibitor was associated with glucose as carbon source and not xylose, and the tolerance advantage of SSK101 was neutralized in LB media. Bioreactor studies were performed under binary stress of furfural and 5-HMF (1 g/L each) and different glucose concentrations in a glucose-xylose mixture with final sugar concentration of 5.5%, mimicking major components of dilute acid treated biomass hydrolysate. In the mixture having 6 g/L and 12 g/L glucose, SSK101 strain produced ~ 18 g/L and 20 g/L ethanol, respectively. Interestingly, the maximum ethanol productivity was better at lower glucose load with 0.46 g/(L.h) between 96–120 h, as compared to higher glucose load where it was 0.33 g/(L.h) between 144–168 h. Importantly, parent strain SSK42 did not exhibit significant metabolic activity under similar conditions of inhibitor load and sugar concentration.Conclusions: E. coli strain SSK101 with pgi deletion had enhanced tolerance against both furfural and 5-HMF, which was associated with presence of glucose in media. Strain SSK101 also had improved fermentation characteristics under both hyperosmotic as well as binary stress of furfural and 5-HMF in media containing glucose-xylose mixture.


Author(s):  
D. E. Philpott ◽  
A. Takahashi

Two month, eight month and two year old rats were treated with 10 or 20 mg/kg of E. Coli endotoxin I. P. The eight month old rats proved most resistant to the endotoxin. During fixation the aorta, carotid artery, basil arartery of the brain, coronary vessels of the heart, inner surfaces of the heart chambers, heart and skeletal muscle, lung, liver, kidney, spleen, brain, retina, trachae, intestine, salivary gland, adrenal gland and gingiva were treated with ruthenium red or alcian blue to preserve the mucopolysaccharide (MPS) coating. Five, 8 and 24 hrs of endotoxin treatment produced increasingly marked capillary damage, disappearance of the MPS coating, edema, destruction of endothelial cells and damage to the basement membrane in the liver, kidney and lung.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
Manfred E. Bayer

Bacterial viruses adsorb specifically to receptors on the host cell surface. Although the chemical composition of some of the cell wall receptors for bacteriophages of the T-series has been described and the number of receptor sites has been estimated to be 150 to 300 per E. coli cell, the localization of the sites on the bacterial wall has been unknown.When logarithmically growing cells of E. coli are transferred into a medium containing 20% sucrose, the cells plasmolize: the protoplast shrinks and becomes separated from the somewhat rigid cell wall. When these cells are fixed in 8% Formaldehyde, post-fixed in OsO4/uranyl acetate, embedded in Vestopal W, then cut in an ultramicrotome and observed with the electron microscope, the separation of protoplast and wall becomes clearly visible, (Fig. 1, 2). At a number of locations however, the protoplasmic membrane adheres to the wall even under the considerable pull of the shrinking protoplast. Thus numerous connecting bridges are maintained between protoplast and cell wall. Estimations of the total number of such wall/membrane associations yield a number of about 300 per cell.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Sign in / Sign up

Export Citation Format

Share Document